利用Matlab进行泊松方程的有限差分计算。
泊松方程的数值解法
相关推荐
基于Matlab开发的光谱方法解一维泊松方程
这篇文档介绍使用光谱方法解一维泊松方程的理论,具体涉及了“poisson1D.m”文件的应用。我们采用正弦变换来求解带有狄利克雷边界条件的问题。相比于简单的有限差分法,该方法提供了更高的数值精度。
Matlab
2
2024-07-31
泊松融合 MATLAB 实现
这是一个基于泊松融合方程的图像融合 MATLAB 实现,参考论文为:Pérez P, Gangnet M, Blake A. Poisson image editing[M]//ACM SIGGRAPH 2003 Papers. 2003:313-318。
该项目包含两个 MATLAB 脚本:Poisson Fusion 和 Poisson Repair,并提供了一些用于练习的图片,包括原始图像、蒙版、目标图像和结果图像。
Matlab
3
2024-05-28
基于切比雪夫加速的SOR方法求解泊松方程
介绍了一种利用切比雪夫加速的逐次超松弛(SOR)方法求解泊松方程的快速算法。该方法通过引入切比雪夫多项式,优化了SOR方法的迭代参数,从而显著提高了收敛速度。数值实验结果表明,该算法在保证计算精度的同时,能够有效减少迭代次数,特别适用于求解大规模泊松方程问题。
Matlab
2
2024-06-01
数值求解一维漂移扩散PDE(电子和离子连续性方程+泊松)-Matlab开发
针对初始均匀等离子体浓度的一维气体二极管,该程序采用均匀细网格上的方法(MOL)求解电子和离子的连续性方程。漂移通量采用Lax-Friedrichs表达式分裂,利用五阶加权ENO方案(WENO5-LF)进行重构。扩散项独立处理,电场强度可通过一维泊松方程的解析解直接计算。边界条件包括阴极的二次电子发射和阳极离子通量的隔离。由于采用WENO5方法,即使在较粗的网格条件下(nx = 80),也能保持较高的精度。生成的MOL ODE系统非僵硬,因此可通过RK方法(如ODE45和ODE23)轻松求解。如有疑问,请随时联系我。
Matlab
2
2024-07-27
常微分方程数值解法比较及MATLAB实现
主要探讨常微分方程的数值解法,包括欧拉法、改进欧拉法和四阶龙格库塔法。针对每种方法,详细分析其原理及在MATLAB中的实现过程,提供详尽的程序代码示例。
Matlab
0
2024-09-27
欧拉法常微分方程的数值解法-Matlab开发
随着技术的不断进步,欧拉法作为常微分方程数值解的一种方法,在Matlab开发中具有重要意义。
Matlab
3
2024-07-27
MATLAB数值计算中的欠定方程组解法探讨
当方程数少于未知量个数时,即出现不定情况,可能存在无穷多个解。MATLAB通过伪逆(pinv)方法求解这种欠定方程组,得到具有最少元素或最小范数的解。
Matlab
0
2024-08-01
泊松分布参数估计方法比较
本研究探讨了泊松分布参数的点估计和区间估计方法,并证明样本均值是参数λ的有效估计量。此外,本研究利用贝叶斯统计分析方法,在先验分布为共轭分布的情况下,推导出最大后验密度可信区间,即最短可信区间。通过实例分析,将该区间估计方法与经典区间估计方法进行了比较。
统计分析
3
2024-05-20
二维泊松方程求解使用MATLAB开发5点有限差分模板
在2x2正方形域内,采用迭代方法(指定迭代次数)使用标准5点模板求解二维泊松方程。问题已考虑齐次诺依曼边界条件。
Matlab
0
2024-09-24