数据架构:数据仓库与数据挖掘
数据仓库和数据挖掘在数据架构中扮演着重要角色。数据仓库负责存储大量历史数据,而数据挖掘则从中提取有价值的信息。
数据挖掘
3
2024-05-28
建行数据仓库基本架构与数据仓库模型介绍
建行数据仓库的基本架构涉及多个业务系统,包括ODS业务系统、AML、ALM、DCC网银个贷系统、信用证系统等。源表(sdata)通过中间层的pdata将数据传递至数据仓库中的CCDA和CAS等组件。核心银行业务处理系统(DCC)在数据仓库中的目标表大致分为三类:拉链表、时间切片表和当前表。这些表通过不同的物理字段来处理时间信息,特别是Start_Date、End_Date和Data_Dt等字段,能够有效地保留ETL过程中的时间维度数据。
Oracle
0
2024-11-05
软件架构:数据仓库与数据挖掘协同应用
数据驱动决策的核心:软件架构
一个完整的数据分析软件架构通常包含以下组件:
数据仓库: 存储经过清洗和转换的海量数据,为数据挖掘提供可靠的数据基础。
ETL工具: 负责从不同数据源中抽取、转换和加载数据到数据仓库中。
数据挖掘应用服务器: 提供数据挖掘算法和模型训练的环境,进行数据分析和模式识别。
管理平台: 实现对整个数据分析流程的监控、管理和优化,保障系统稳定运行。
行业分析平台: 针对特定行业需求,提供定制化的数据分析工具和可视化报表,辅助决策。
数据挖掘
1
2024-05-25
Oracle数据仓库系统架构PPT
Oracle数据仓库系统的逻辑体系结构包括三层:1. 数据获取层,2. 数据管理层,3. 数据使用层。
Oracle
0
2024-08-08
Druid 实时 OLAP 数据仓库架构解析
海量数据处理: 可扩展至 PB 级数据,满足大规模数据需求。
亚秒级响应: 即时导入,查询响应速度达亚秒级,实现实时数据分析。
高可用性: 分布式容错架构,确保无宕机运行,保障数据可靠性。
存储高效: 采用列存储和压缩技术,大幅减少数据存储空间,节省存储成本。
高并发支持: 支持面向用户应用,可满足高并发访问需求。
Hadoop
3
2024-04-30
银行数据仓库详细架构解析
作为企业级统一数据平台,哈尔滨银行的数据仓库扮演着至关重要的角色,为全行的管理、营销提供全面、一致、及时的数据支持。该数据仓库包含总体架构、物理架构、技术架构和数据架构四大组成部分。总体架构涵盖数据采集、数据整合、数据推送和通用展现四个平台;物理架构描述了系统的硬件布局和服务器配置;技术架构涉及前端应用技术和后端技术体系;数据架构则定义了数据源范围和分层管理。通过这些设计,哈尔滨银行致力于构建高效、可靠的数据支持平台。
DB2
2
2024-07-25
集群数据库类型与Oracle数据仓库架构分析
在现代数据库管理中,集群数据库类型逐渐成为主流。常见的数据库类型包括无所共享的数据库(IBM DB2)和单一镜像数据库解决方案。每种架构在解决维护问题、可用性问题和性能问题方面各有优缺点。
无所共享的数据库(如IBM DB2)通过分布式架构实现高可用性,减少了单点故障的风险。而单一镜像架构则通过集中存储提升了数据的一致性和完整性。数据分布策略上,通常按字母范围进行分配:
A-E:数据集A到E
F-K:数据集F到K
L-S:数据集L到S
T-Z:数据集T到Z
这些设计帮助系统在处理大量数据时依然能够保持高效和稳定。
Oracle
0
2024-11-05
数据仓库与数据挖掘
数据仓库将数据转化为可供分析的信息,而数据挖掘从这些数据中提取模式和趋势,两者结合可为决策提供支持。
数据挖掘
4
2024-05-13
数据仓库的特点与集成 - 第3章数据仓库
数据仓库的特点包括面向特定应用的集成,每个数据库针对特定应用,彼此独立。数据仓库中的数据面向企业级的分析处理,已经实现了数据的集成,从而消除了数据不一致性。与操作型数据库相比,数据仓库具有显著的集成优势。
算法与数据结构
0
2024-08-23