作为企业级统一数据平台,哈尔滨银行的数据仓库扮演着至关重要的角色,为全行的管理、营销提供全面、一致、及时的数据支持。该数据仓库包含总体架构、物理架构、技术架构和数据架构四大组成部分。总体架构涵盖数据采集、数据整合、数据推送和通用展现四个平台;物理架构描述了系统的硬件布局和服务器配置;技术架构涉及前端应用技术和后端技术体系;数据架构则定义了数据源范围和分层管理。通过这些设计,哈尔滨银行致力于构建高效、可靠的数据支持平台。
银行数据仓库详细架构解析
相关推荐
建行数据仓库基本架构与数据仓库模型介绍
建行数据仓库的基本架构涉及多个业务系统,包括ODS业务系统、AML、ALM、DCC网银个贷系统、信用证系统等。源表(sdata)通过中间层的pdata将数据传递至数据仓库中的CCDA和CAS等组件。核心银行业务处理系统(DCC)在数据仓库中的目标表大致分为三类:拉链表、时间切片表和当前表。这些表通过不同的物理字段来处理时间信息,特别是Start_Date、End_Date和Data_Dt等字段,能够有效地保留ETL过程中的时间维度数据。
Oracle
0
2024-11-05
Druid 实时 OLAP 数据仓库架构解析
海量数据处理: 可扩展至 PB 级数据,满足大规模数据需求。
亚秒级响应: 即时导入,查询响应速度达亚秒级,实现实时数据分析。
高可用性: 分布式容错架构,确保无宕机运行,保障数据可靠性。
存储高效: 采用列存储和压缩技术,大幅减少数据存储空间,节省存储成本。
高并发支持: 支持面向用户应用,可满足高并发访问需求。
Hadoop
3
2024-04-30
数据仓库架构与组件
架构:- ETL 工具- 元数据库(存储库)及元数据管理- 数据访问和分析工具
数据挖掘
6
2024-05-01
银行数据集合
各大银行的数据集合,包括详细的财务和客户信息。这些数据集对于研究金融市场和客户行为非常重要。
MySQL
2
2024-07-20
Oracle数据仓库系统架构PPT
Oracle数据仓库系统的逻辑体系结构包括三层:1. 数据获取层,2. 数据管理层,3. 数据使用层。
Oracle
0
2024-08-08
数据架构:数据仓库与数据挖掘
数据仓库和数据挖掘在数据架构中扮演着重要角色。数据仓库负责存储大量历史数据,而数据挖掘则从中提取有价值的信息。
数据挖掘
3
2024-05-28
商业银行IT系统中的数据仓库应用
商业银行IT系统中的数据仓库涵盖了数据的抽取、存储和管理、以及数据的分析和展现三个关键技术层面。数据抽取层负责ETL过程的设计和实施,确保数据加载和更新。存储和管理层采用ODS-DW结构,支持多维查询和包括业务数据和元数据的稳定存储。数据分析和展现层提供OLAP和数据挖掘技术,利用人工智能和统计分析发现并预测隐藏在历史数据中的规律。
数据挖掘
0
2024-09-13
Hive数据仓库技术解析
本解析深入探讨Apache Hive的核心概念、架构和应用场景。从数据仓库的基本原理出发,逐步讲解Hive如何通过类SQL语言简化大数据分析任务。
核心内容:
Hive架构解析: 详细解读Hive的架构分层,包括用户接口、驱动器、元数据存储、查询引擎以及底层存储系统,阐述各模块之间的数据流转机制。
HiveQL语法详解: 系统介绍HiveQL的语法规则、数据类型、函数以及查询语句,并结合实际案例演示如何编写高效的HiveQL脚本。
数据存储与管理: 分析Hive如何与HDFS、HBase等底层存储系统集成,阐述Hive表结构设计、分区策略、数据压缩等优化技巧。
性能调优实践: 探讨影响Hive性能的关键因素,并提供一系列优化策略,例如数据倾斜处理、合理设置MapReduce参数等,提升Hive查询效率。
适用人群:
数据仓库工程师
大数据开发人员
数据分析师
Hive
2
2024-06-17
数据仓库ETL流程解析
在数据仓库构建过程中,ETL作为数据整合的核心环节至关重要。不同于以往小规模数据处理的方式,数据仓库ETL 凭借其理论高度和系统化的流程,为海量数据的迁移、转换和加载提供了可靠的解决方案。 ETL 分为三个步骤:抽取(Extract)、转换(Transform)和加载(Load),每个步骤都经过精心设计,以确保数据质量和效率。
Access
2
2024-06-22