这份MATLAB源代码实现了论文中提出的L1-PCA外推的近端交替最大化方法,用于研究其在合成和真实数据集上的线性收敛性能。与标准的PAM方法、惯性PAM (iPAM)及GS-iPAM进行了比较。作者为王鹏、刘会康和Anthony Man-Cho So,提交给《优化学杂志》(SIAM Journal on Optimization)。
MATLAB实现L1-PCA外推的PAM方法
相关推荐
MATLAB函数用于L1-PCA精确解的优化工具(穷举搜索)
此MATLAB函数为输入的D×N矩阵X提供K ≥ 1个精确的L1-PCA解决方案。方法采用全面的二进制字段穷举搜索。复杂度依赖于N和K的指数;线性于D。
Matlab
1
2024-07-24
使用MATLAB进行L2范数计算的源码-hqp_l1hqp_l1
MATLAB源码用于严格分层线性规划中L2范数的加权方法存储库,适用于机器人控制。使用L1范数作为正则化步骤可以实现对机器人系统的稀疏或简约控制。此存储库包含提交给IEEE RA-L/ICRA审查的论文的源代码,正在审核中。即将发布的文档提升代码的可读性。实验视频展示了双臂控制中WLP-L1算法和WLP-L2算法的效果,以及对偶技巧的重构。对偶技巧的源代码可在对偶技巧文件夹中找到,用于将字典线性程序重新表述为单目标线性程序。要运行此代码,需要安装MATLAB和Yalmip工具箱,并建议安装免费学术许可证的Gurobi以重现报告的计算性能。另外,还提供了用于分层二次规划的未记录的对偶技巧的实现。该代码在Ubuntu 18.04LTS上测试,并包括Python3.7或更高版本的依赖项CasADi和PyBullet,用于任务功能的自动区分和优化求解器接口,以及模拟和可视化机器人运动。
Matlab
0
2024-08-22
PCA算法的Matlab实现
PCA算法在数据分析中具有重要的应用价值,特别是在降维和特征提取方面。Matlab提供了便捷的工具和函数来实现PCA算法,可以帮助研究人员和工程师更高效地处理数据。通过Matlab,用户可以轻松地进行数据预处理、主成分分析和结果可视化,从而加快分析过程,提升数据处理的效率。
Matlab
2
2024-08-01
Matlab中的PCA实现
Matlab中主成分分析(PCA)的实现方法
Matlab
0
2024-10-03
Matlab下的PCA实现示例
这篇文章展示了如何在Matlab中实现PCA(主成分分析)算法,希望对大家在数据分析和模式识别中的应用有所帮助。PCA是一种常用的数据降维技术,能够有效提取数据的主要特征。通过,读者可以学习如何利用Matlab编写PCA算法,加深对其原理和应用的理解。
Matlab
2
2024-07-17
PCA与LDA方法的人脸识别matlab实现
这是一份完全可用的人脸识别matlab代码,采用主成分分析(PCA)和线性判别分析(LDA)方法提取特征进行识别。
Matlab
0
2024-08-17
使用PCA实现图像融合的优化方法
PCA (Principal Component Analysis,主成分分析) 是一种广泛应用的数据降维算法,主要用于将 n维特征 转换为更少的 k维特征。在图像融合中,PCA通过提取图像的 主成分,重新构建出 正交的k维特征。这种方法不仅减少了数据冗余,还在保持主要信息的前提下实现了不同图像的 高效融合。整个过程可简化为以下步骤:
特征提取:从输入图像中提取关键特征,构成多维特征空间。
主成分计算:对特征空间进行主成分分析,确定各个主成分的重要性。
重构图像:将主要成分映射回图像空间,生成融合后的图像,突出主要信息并消除冗余。
使用PCA的图像融合不仅能保持图像质量,还能有效减少存储和计算量,广泛应用于多源图像处理和遥感影像融合。
算法与数据结构
0
2024-10-25
PCA人脸识别matlab实现
提供了利用PCA进行人脸识别分类的完整Matlab代码,包括测试数据集。所有数据集版权归原作者所有,仅供用户测试使用。
Matlab
0
2024-08-28
稳健PCA的Matlab代码实现——fastRPCA
这份Matlab代码涵盖了鲁棒PCA和SPCP的多种变体,帮助研究人员快速实现相关算法。
Matlab
0
2024-09-14