这段代码展示了回声状态网络自动编码器ESN-RAE的实现。它通过将隐藏层的激活作为新的数据表示形式,提取与原始数据不同的特征。随后,这些新数据被注入支持向量机分类器中,以评估分类准确性。该代码适用于ECG200数据集,也可以通过简单的数据集替换应用于其他数据集。
ESNmatlab代码-回声状态网络自动编码器
相关推荐
使用递归自动编码器进行情感分析的MATLAB代码
MATLAB中的代码利用半监督递归自动编码器学习句子含义,并预测电影评论的情感极性。该代码基于Richard Socher的研究,能够在轮虫电影评论数据集上达到72%的准确率。
Matlab
7
2024-09-30
星座图matlab代码的自动编码器用于数据降维
在当今的大数据时代,降低特征空间是一项重要且昂贵的任务。传统方法如PCA、LDA、拉普拉斯特征图和扩散图等,现在通过神经网络技术——自动编码器来解决。自动编码器是一种神经网络,通过中间编码层将输入复制到输出层。在这个例子中,使用了单个隐藏层,将92个输入变量的特征空间降至16个。尽管减少了数据,但模型的AUC分数仍接近最佳结果(0.753对0.771)。
Matlab
8
2024-07-26
基于GAN改进的自动编码器F-ANOGAN在异常检测中的应用
F-ANOGAN是一种利用生成对抗网络(GAN)改进的自动编码器(AE),用于异常检测的方法。与传统AE不同,F-ANOGAN结合了GAN的生成器和判别器,以提高对数据集中异常行为的识别能力。在训练过程中,生成器模仿AE的编码器产生的中间表示,从而能更准确地捕捉复杂的正常数据模式,并对异常样本产生高重构误差。F-ANOGAN的优势在于综合利用了AE和GAN的特性,适用于处理高维度和复杂的数据集。
算法与数据结构
9
2024-10-21
利用深度稀疏自动编码器实现高维矩阵降维与特征提取
深度稀疏自动编码器(Deep Sparse Autoencoder, DSAE)是一种神经网络模型,用于学习数据的非线性表示,特别是在高维数据的降维和特征提取方面表现出色。在本场景中,我们使用MATLAB编程环境来实现这一技术,以处理节点相似度矩阵。
自动编码器(Autoencoder, AE)是无监督学习的一种,由编码器(Encoder)和解码器(Decoder)两部分组成。编码器将输入数据压缩为低维的隐藏表示,而解码器则尝试从这个隐藏表示重构原始输入。深度自动编码器具有多层隐藏层,可以捕获更复杂的非线性结构。
稀疏自动编码器(Sparse Autoencoder, SAE)引入了稀疏性约束
算法与数据结构
8
2024-10-31
Matlab开发JPEG编码器
Matlab开发:JPEG编码器,涵盖JPEG编码和解码的实现,无需使用block proc函数。
Matlab
8
2024-08-22
编码器输出工具
编码器输出视频客户端非常出色,如果使用Premiere CS4需要进行渲染,可以选择这种格式进行导出。
MySQL
9
2024-07-31
Transformer编码器解码器拆解
步骤拆解:
编码阶段:
输入文本被编码为一组向量序列。
位置编码被添加到向量序列中,以保留单词在序列中的顺序信息。
经过多个注意力层和前馈网络层,对向量序列进行编码。
解码阶段:
开始令牌被输入解码器。
编码器输出被用作解码器的上下文信息。
经过多个注意力层和前馈网络层,解码器生成预测的单词。
预测的单词被输出为译文。
算法与数据结构
10
2024-05-13
MATLAB代码排课应用与心律失常回声状态网络的完整测试
技术进步的推动下,MATLAB代码现已广泛用于排课和心律失常回声状态网络的完整测试。这些应用包括储层计算分类器在MIT单铅版(2016-2018)Echo State Network项目中的应用,涵盖了使用Physionet/Physiobank MIT-BIH AR数据库的预处理数据库,提供了简单的.txt文件形式以及必要的解压缩文件MIT/leadA.zip和MIT/leadB.zip。心电图记录在[0.5,35Hz]带宽中进行过滤,通过去除噪声和进行基线校正,并且采样率插值到250Hz。滤波器方面,使用了巴特沃斯高通滤波器(截止频率为0.5 Hz)和12阶有限冲激响应滤波器(35 Hz,
Matlab
8
2024-07-22
MATLAB开发JPEG编码器解码器
MATLAB开发:JPEG编码器解码器。该程序使用了DCT、量化、Zigzag重新排序和行程编码,符合JPEG标准。
Matlab
6
2024-09-26