评估模型性能时,计算损失函数是一个关键步骤。
评估模型性能时的损失函数计算
相关推荐
CRMTool评估集体风险模型总损失分布的MATLAB开发工具
CRMTool是一个聚合损失分布计算工具,利用特征函数数值反演评估集体风险模型的复合聚合损失分布和相关的风险价值。它作为CF TOOLBOX的一部分,提供算法用于评估选定特征函数,并通过简单梯形规则或FFT算法计算PDF和CDF。
Matlab
0
2024-09-27
MATLAB分时代码地震损失评估
此页面是Kitayama S,Cilsalar H.(正在审核)提交的手稿的在线存储库:“通过ASCE / SEI 7-16程序设计的隔震和非隔震建筑物的比较地震损失评估。”存储库提供了地震损失评估MATLAB代码,包括更新的文件:“info_Comp_Fragility_NonStructural_Accel.m”,“info_Comp_Fragility_Structural”和“info_num_Components_Structural.m”。这些MATLAB代码基于条件频谱方法计算损失漏洞功能、预期年度损失(EAL)和随时间推移的预期损失(EL)。
Matlab
0
2024-08-09
PyTorch实现的常用深度学习损失函数
一些适用于分类、分割等网络的损失函数PyTorch实现,包括:
label-smooth
amsoftmax
partial-fc
focal-loss
dual-focal-loss
triplet-loss
giou-loss
affinity-loss
pc_softmax_cross_entropy
ohem-loss(softmax based on line hard mining loss)
数据挖掘
3
2024-05-25
评估分类模型的性能度量MATLAB开发应用
机器学习中的分类模型通过多种常用性能度量来评估其效果。这个函数计算准确度、灵敏度、特异性、精确度、召回率、F度量和G均值等指标。函数的参数包括实际值和预测值,返回一个包含所有性能指标的矩阵。
Matlab
0
2024-08-13
黄河下游滩区洪水淹没损失评估研究
随着黄河下游河道泥沙沉积导致洪水漫滩频繁,严重影响滩区安全,进行漫滩洪水淹没损失评估可为滩区防洪减灾提供依据。技术进步引领下,利用回归分析建立黄河下游滩区玉米、大豆、花生、林地与房屋等洪水淹没水深与淹没损失的关系函数,构建了评估体系。基于数字地形与地理属性信息数据库,模拟与预测了8000m3/s、14000m3/s量级洪水滩区演进及淹没影响,提出了淹没损失率分布图。洪峰时刻淹没损失较大,尤其是低秆作物。
统计分析
3
2024-07-14
基于航空公司数据的损失预警模型构建
SASchampion2017介绍了基于航空公司数据的损失预警模型,包括损失概率模型和客户画像。以58,954条经过数据预处理的航空客户数据为例,利用分类和聚类技术进行客户损失预测和价值细分。先进行了客户损失预测,使用了决策树、随机森林和梯度提升树进行训练和评估,并比较了它们的分类性能。结果显示,基于Boosting算法的分类器表现更佳,错误率更低。对变量的使用分析表明,最后一次飞行至观察窗口结束时间、第二年总机票价格和最大飞行间隔对预测客户流失具有重要贡献。随后,采用k-medoids聚类对非损失和损失客户进行了分组。
数据挖掘
2
2024-07-23
NRI的R语言计算在风险预测模型评估中的应用
风险预测模型评估是为了评估预测模型在风险预测方面的准确性和有效性。NRI(Net Reclassification Improvement)是衡量风险预测模型性能的一种方法,通过比较新旧模型在风险分类上的改进程度来评估。在R语言环境下,可以使用nricens和PredictABEL两种包来进行NRI计算,分别计算绝对NRI和相对NRI。此外,使用logistic回归模型建立预测模型,并进行数据预处理和结果对比。
算法与数据结构
3
2024-07-21
Hadoop性能评估
Yarn jar hadoop-mapreduce-client-jobclient-tests.jar
TestDFSIO --write --nrFiles 10 --size 1000MB
TestDFSIO --read --nrFiles 10 --size 1000MB
TestDFSIO --clean
Hadoop
7
2024-04-30
流失预警模型评估
对流失预警模型的评估,提出评估的指标和方法。
数据挖掘
3
2024-04-30