对流失预警模型的评估,提出评估的指标和方法。
流失预警模型评估
相关推荐
SMOTE的MATLAB代码实现与流失预警模型构建(AUC83%)
本项目展示了SMOTE算法的MATLAB代码实现,并应用于流失预警模型的构建(二分类问题)。该模型源自我在某银行构建的客户流失模型,模型性能包括AUC:83%、召回率:19.4%、精确率:85%。数据使用外部数据集,已进行脱敏处理。本项目帮助学习者掌握以下技能:
数据处理与特征工程
使用LightGBM进行建模
sklearn包的使用(包括:GridSearchCV寻优、StratifiedKFold分层交叉验证、train_test_split数据切分等)
stacking模型融合技术
绘制AUC图与混淆矩阵图
输出预测名单并进行结果分析。
项目内容包括详细的注释,覆盖率约80%,适合新手快速入门。所有步骤都解释清楚:是什么(WHAT)、怎么做(HOW)、为什么这么做(WHY)。
支持持续更新,并提供免费帮助,欢迎提出问题或建议。
请注意:本项目仅用于学习和研究,非商业用途,转载请注明来源。如有侵权问题,请及时联系作者。作者邮箱:909336740@qq.com
Matlab
0
2024-11-06
广东移动佛山用户流失预警模型: 基于SPSS Clementine的数据挖掘实战
该项目聚焦广东移动佛山地区的用户流失问题,利用SPSS Clementine数据挖掘平台,构建了精准的用户流失预警模型。模型有效识别潜在流失用户,为精准营销和客户关系管理提供数据支持,助力提升用户留存率。
数据挖掘
3
2024-05-23
电信大客户流失数据挖掘模型研究
本研究提出一种基于数据挖掘的大客户流失预测模型,从电信运营行业大客户流失的实际问题出发,详细阐述了数据挖掘在电信行业的应用。模型使用决策树算法进行数据挖掘,并已在实际中得到应用,效果良好。
算法与数据结构
2
2024-05-30
电信行业数据挖掘PPT流失模型设计详解
流失模型设计的定义:将预警期出账、观察期未出账的用户定义为流失用户。用户分析包括统计月、用户状态正常,仅保留最近3个月连续出账的用户。排除入网满一年的3G用户、非职工、非公免、非公纳及测试用户以及无线上网卡用户。建模时间窗口定义为分析期,即用户流失前历史通信行为产生的时间段,是模型输入变量的时间窗口(M=2011年9、10、11月)。维系期指预警名单输出时间,即应用模型预警名单并开展维系工作的时间窗口(M=2010年12月)。观察期是流失定义标识产生的时间,时间跨度为一个月。
数据挖掘
3
2024-07-17
WEKA分类模型评估教程
在数据挖掘和机器学习领域中,评估分类模型是至关重要的一步。它帮助我们了解模型在不同数据集上的表现和准确性。通过评估,我们可以选择最适合特定问题的模型,从而提高预测能力和应用效果。
Hadoop
2
2024-07-17
学生学习评估模型综述
在教育评估领域,单纯依赖“绝对分数”进行评估已不再适应学生个体差异和成长变化的需求。本研究提出了一个综合评估框架,结合多种方法和技术,更全面、客观地评价学生学习状况。方法包括综合评分法,统计分析法,马尔柯夫链模型,理想解法(TOPSIS),以及灰色预测模型GM(1,1)等。数据分析显示,优良及格学生成绩占比高达93.06%,且不及格学生比例逐渐下降。
统计分析
0
2024-08-13
利用数据挖掘建立和优化电信客户流失预测模型
数据挖掘技术在电信客户流失预测中的应用愈发重要,该技术提供了实现个性化服务和提前干预的可能性,对于电信公司管理客户关系至关重要。建议下载详细了解如何利用数据挖掘优化客户流失预测模型。
数据挖掘
3
2024-07-17
基于航空公司数据的损失预警模型构建
SASchampion2017介绍了基于航空公司数据的损失预警模型,包括损失概率模型和客户画像。以58,954条经过数据预处理的航空客户数据为例,利用分类和聚类技术进行客户损失预测和价值细分。先进行了客户损失预测,使用了决策树、随机森林和梯度提升树进行训练和评估,并比较了它们的分类性能。结果显示,基于Boosting算法的分类器表现更佳,错误率更低。对变量的使用分析表明,最后一次飞行至观察窗口结束时间、第二年总机票价格和最大飞行间隔对预测客户流失具有重要贡献。随后,采用k-medoids聚类对非损失和损失客户进行了分组。
数据挖掘
2
2024-07-23
线性回归模型评估与优化
线性回归是一种统计建模技术,用于分析多个变量之间的线性关系。它在数据分析、预测和科学探索中有广泛应用。一元线性回归涉及一个自变量和一个因变量,多元线性回归涉及多个自变量。该模型假设因变量可以通过直线近似描述。拟合线性回归通常使用最小二乘法来优化系数,使得预测值与观测值的误差最小化。在MATLAB中,可使用polyfit函数进行线性回归计算。关键指标包括回归系数、t统计量、p值、R-squared和残差标准误差。除了参数,还需检验线性回归的假设,如线性关系、正态性、独立性和方差齐性。
统计分析
0
2024-08-14