该著作由飞思科技产品研发中心编著,深入讲解小波理论并提供MATLAB实现的源码。
小波理论与MATLAB实现实践
相关推荐
Matlab小波变换实现
这是一个使用Matlab语言实现小波变换的程序。
Matlab
2
2024-05-28
matlab实现多尺度二维小波-小波变换
多尺度二维小波命令格式如下:1. [C, S]=wavedec2(X,N,’wname’),2. [C, S]=wavedec2(X,N,Lo_D,Hi_D)。
Matlab
0
2024-08-19
Matlab程序实现连续小波变换
欢迎同道朋友参与讨论连续小波变换在Matlab中的实现。
Matlab
2
2024-07-26
图像小波过滤的matlab实现
这篇文章介绍了使用matlab编写的图像小波过滤算法,该算法简单易懂,适合初学者学习和应用。
Matlab
0
2024-08-09
小波变换及其Matlab实现示例
小波变换及其Matlab实现程序适合初学者学习。
Matlab
0
2024-08-23
Matlab中的小波变换实现分析
对于一幅标准图像,使用Matlab进行了三级Mallat小波分解,获得了小波的高频和低频系数。通过重建使用三个低频分量LL1、LL2和LL3的小波系数,分别计算它们与原始图像的PSNR值,进行了比较分析。
Matlab
2
2024-07-13
matlab实现小波变换系数重构
upcoef命令的使用格式包括:1. Y=upcoef(O,X,'wname',N) 2. Y=upcoef(O,X,'wname',N,L) 3. Y=upcoef(O,X,'Lo_R, Hi_R',N) 4. Y=upcoef(O,X,'Lo_R,Hi_R',N,L) 5. Y=upcoef(O,X,'wname') 6. Y=upcoef(O,X,Lo_R,Hi_R),其中O='a'表示低频,O='d'表示高频。
Matlab
2
2024-07-22
Matlab实现小波去噪的程序
使用Matlab编写的小波去噪算法,可以有效处理信号中的噪声问题。该程序利用小波变换技术,对输入信号进行分解和重构,以提高信号的清晰度和质量。通过调整参数和选择合适的小波基函数,可以实现不同类型信号的去噪效果。
Matlab
2
2024-08-01
MATLAB实现小波神经网络示例
小波神经网络(WNN)是一种结合了小波理论与神经网络模型的复合结构,在处理非线性、非平稳信号时具有独特优势。本资料包WNN的matlab实现例程.zip提供了一个在MATLAB环境下实现小波神经网络的实例,具有极高的参考价值。
小波函数:是小波神经网络的基础,使用了Mexihat函数,适合信号精细分析。
网络结构:包含输入层、隐藏层和输出层,具体结构需查看源代码。
训练过程:使用MATLAB神经网络工具箱,包括反向传播、小波传播等算法,调整网络权重。
数据文件:压缩包中的数据用于训练和测试,可能是时间序列或图像数据。
应用领域:在信号处理、图像识别、故障诊断、金融预测等多个领域广泛应用。
要深入理解和利用这个例程,需要一定的MATLAB编程基础以及对神经网络和小波理论的了解。
算法与数据结构
0
2024-10-31