这款优秀的Matlab编写的高斯混合模型工具包涵盖了聚类、回归等多种功能,详细介绍了每个函数的具体用途和操作方法。
优化的高斯混合模型工具包(聚类、回归等)
相关推荐
weka经常使用的聚类工具包
非常有用的数据挖掘工具包
SQLServer
1
2024-07-30
matlab高斯混合模型
matlab高斯混合模型是一种在matlab中使用的模型。
Matlab
0
2024-08-22
灵活混合模型的Matlab实现及其在聚类中的应用
SNOB是Matlab中灵活混合模型的实现,利用最小消息长度准则来估计混合模型的结构和参数。它支持多种分布的混合,包括Beta、指数、单变量伽马、逻辑回归等。用户可以指定子种群数量,或让SNOB自动探索最优数量。程序简单易用,支持缺失数据处理。
Matlab
3
2024-07-19
社区发现工具包介绍CDTB提供图形生成和聚类功能
社区发现工具包(CDTB)包含多种功能,包括图形生成器、聚类算法和聚类数选择功能。CDTB设计灵活,允许用户添加自定义功能和扩展。用户可以通过MATLAB命令行直接调用这些功能,编写包含CDTB的自定义代码,或者使用图形用户界面(GUI)进行社区检测和数据可视化。注意:CDTB的当前版本(v.0.90)不包含某些算法,但较新版本(v.0.91)可从http://users.auth.gr/~kehagiat/Software/ComDetTBv091.zip获取。
Matlab
0
2024-09-28
基于高斯核的距离和密度聚类算法GDD聚类-matlab开发
请引用:Emre Güngör,Ahmet Özmen,使用高斯核的基于距离和密度的聚类算法,发表于《Expert Systems with Applications》第69卷,2017年,第10-20页,ISSN 0957-4174。详细信息请参阅原始文章链接:https://doi.org/10.1016/j.eswa.2016.10.022 (http://www.sciencedirect.com/science/article/pii/S095741630553X)。对于聚类数据集和/或形状集,您可以查看:https://cs.joensuu.fi/sipu/datasets/
Matlab
0
2024-08-05
基于(DE)算法的混合聚类系统MATLAB开发
利用(DE)算法开发的混合聚类系统,用于设置有效的初始状态和不同成对距离。技术进步引领下,此系统在聚类应用中展现出卓越性能。
Matlab
2
2024-07-29
EM算法求解高斯混合模型及Matlab实现
EM算法与高斯混合模型
本篇阐述了EM算法的原理, 并详解其在高斯混合模型参数估计中的应用。此外,我们提供了基于Matlab的代码实现,用于实际演示并评估算法性能。
EM算法原理
EM算法是一种迭代优化策略,用于含有隐变量的概率模型参数估计。其核心思想是在无法直接观测到所有变量的情况下,通过迭代地估计缺失信息来逐步逼近最大似然解。
算法流程包含两个步骤:
E步 (Expectation): 基于当前参数估计,计算缺失数据的期望。
M步 (Maximization): 利用E步得到的期望,更新模型参数,以最大化似然函数。
高斯混合模型
高斯混合模型是一种强大的概率模型,能够表示复杂的数据分布。它假设数据是由多个高斯分布混合而成,每个高斯分布代表一个子类。
Matlab实现
我们使用Matlab编写代码,实现了EM算法对高斯混合模型参数的估计。代码中包含了数据生成、模型初始化、EM迭代优化以及结果可视化等部分。
总结
EM算法为解决高斯混合模型参数估计问题提供了一种有效途径。通过Matlab代码实现,我们可以直观地理解算法流程,并验证其在实际应用中的性能。
Matlab
3
2024-05-26
高斯混合模型优化期望最大化算法在matlab中的应用
高斯混合模型因其在多个领域中对训练数据建模的能力而广泛应用。我编写的matlab代码通过输入训练数据集,输出均值、协方差和混合比,有效估计高斯混合模型的参数。虽然代码在处理大数据时可能速度较慢,但相较原始matlab代码的gmdistribution.fit,在大数据量下表现更为优越。
Matlab
3
2024-07-17
Matlab声场模型工具包——源码下载
这是一个Matlab声场模型工具包,涵盖了各种接口程序,可用于声学研究和应用开发。
Matlab
0
2024-08-25