图与子图的研究在数据分析算法中具有重要意义,探讨它们之间的关联对于提升算法效率至关重要。
图与子图-数据分析算法相关联研究
相关推荐
频繁子图挖掘数据分析关联算法
频繁子图挖掘的算法,挺适合做大规模数据的时候用,是你想找出图结构里的高频模式。支持度阈值minsup的设定比较灵活,能帮你过滤掉没啥用的子图。哦对,这玩意儿主要用在无向连通图上,搜索空间大,跑起来计算量也不小,所以选算法和优化挺关键的。
搜索空间的指数级复杂度,挺考验性能优化功底的。想象一下,有d个实体的时候,候选项集数量是2^d,不优化简直噩梦。推荐你搭配看下基于加权不确定图数据的高效紧密子图挖掘算法,里面有些思路还不错。
代码实现上,用Java或Python都比较常见,像Java 实现无向图 PageRank 算法、Python 判断有向图与无向图连通性,都能借鉴一下。如果你追求效率,建议
算法与数据结构
0
2025-06-29
顶点增长算法与数据分析关联研究
顶点增长算法用邻接矩阵描述图形,将一对(k-1) × (k-1)的邻接矩阵合并成k×k的邻接矩阵。该方法通过合并子图的过程来生成结果矩阵:如果删除两个邻接矩阵的最后一行和最后一列后得到相同的子矩阵,则合并M1和M2,将M2的最后一行和最后一列添加到M1中。新矩阵的其余元素要么为0,要么用连接顶点对的合法边标号替换。
算法与数据结构
8
2024-09-21
通过边增长生成候选子图的数据分析算法关联分析
在候选产生阶段,通过边增长将新边插入现有频繁子图中。与顶点增长不同,结果子图的顶点数未必增加。通过边增长产生候选子图的过程如下:当从频繁子图g1中删除一条边后得到的子图与从g2中删除一条边后得到的子图拓扑等价时,g1与g2合并。合并后的子图包括g1并增加g2的额外边。
算法与数据结构
10
2024-07-25
数据分析算法关联分析的转化方法
将事务处理过程转化为图形模型是数据分析算法中关联分析的重要步骤。
算法与数据结构
10
2024-08-15
关联规则算法在金融数据分析中的创新研究
这篇硕士毕业论文于2008年1月发布,探讨了关联规则算法在金融数据分析中的应用。详细介绍了对Apriori算法的改进,引入hecker确信因子以过滤无效规则。采用了一种创新的股票数据预处理算法进行数据预处理,并通过对上交所部分股票数据的分析验证了算法的有效性。
数据挖掘
18
2024-07-14
数据分析算法的序列模式及其关联分析
购物篮数据经常包含顾客购买商品的时间信息,可以利用这些信息将顾客的购物行为整合成事务序列。然而,传统的关联模式概念仅关注商品的同时出现关系,忽视了数据中的时间序列信息。对于识别动态系统的重要特征或预测特定事件的发生,时间序列信息可能具有重要价值。
算法与数据结构
15
2024-09-14
关联数据分析示例
该文件提供了关联数据分析的示例,您可以使用 SPSS Modeler 探索数据之间的关系。
spark
11
2024-05-15
数据分析算法关联分析的提取序列模式优化方法
提取序列模式的优化方法涉及蛮力技术,用于分析给定的事件集合。对于给定的n个事件集合{i1, i2, i3, …, in},我们考虑多个候选序列,通过蛮力方法进行关联分析。这些候选序列包括不同长度的组合,以探索事件之间的关联。
算法与数据结构
14
2024-07-16
市场研究数据分析方法
线性回归的统计检验、判别的使用方法、SPSS 的数据流程……这些在市场研究里啊,都是挺常见也挺实用的套路。蛮推荐你看看《市场研究中的数据方法.ppt》,讲得挺全的,像线性回归、判别这些方法都讲了怎么用。尤其对搞市场调查或用户调研的朋友,思路会打开不少。比如你想用SPSS跑一波问卷数据,不知道从哪下手?可以先瞄一眼里面提到的流程,比较适合刚入门或者想梳理框架的人。想看更详细操作,也可以顺手翻翻这篇:SPSS 11.0 市场研究数据,配合食用更香。再说判别吧,用来区分人群画像那种场景挺合适。比如你想看看“回购用户”和“一次性用户”到底差在哪,就可以用它做点分类实验。这篇文章讲得还不错哦:线性判别概
算法与数据结构
0
2025-07-02