这篇硕士毕业论文于2008年1月发布,探讨了关联规则算法在金融数据分析中的应用。详细介绍了对Apriori算法的改进,引入hecker确信因子以过滤无效规则。采用了一种创新的股票数据预处理算法进行数据预处理,并通过对上交所部分股票数据的分析验证了算法的有效性。
关联规则算法在金融数据分析中的创新研究
相关推荐
数据挖掘中关联规则算法的研究
近年来,随着计算机技术的迅猛发展,信息技术得到了广泛的应用,数据挖掘技术作为一个新兴领域,其算法之一——关联规则算法,尤为活跃。关联规则算法能够有效处理大量数据和信息,通过从数据库中提取繁琐的项集,并建立这些项集之间的关联关系,从而挖掘出有价值的数据信息,满足不同领域的需求。深入研究了数据挖掘中关联规则算法的应用与发展。
数据挖掘
0
2024-09-14
关联规则挖掘的新算法研究
关联规则挖掘一直是数据挖掘中重要的内容之一。提出了DPCFP-growth算法,它是基于MSApirori算法,并采用了CFP-growth分而治之的策略,以弥补原算法的不足。与CFP-growth算法相比,DPCFP-growth算法有效地将大数据库分解为多个小的子数据库,从而提高了算法的运行效率。实验结果表明,DPCFP-growth算法在大型数据挖掘中具有优越性。
数据挖掘
3
2024-07-17
顶点增长算法与数据分析关联研究
顶点增长算法用邻接矩阵描述图形,将一对(k-1) × (k-1)的邻接矩阵合并成k×k的邻接矩阵。该方法通过合并子图的过程来生成结果矩阵:如果删除两个邻接矩阵的最后一行和最后一列后得到相同的子矩阵,则合并M1和M2,将M2的最后一行和最后一列添加到M1中。新矩阵的其余元素要么为0,要么用连接顶点对的合法边标号替换。
算法与数据结构
0
2024-09-21
数据挖掘中的Apriori算法与关联规则分析
Apriori算法是一种采用逐层搜索的迭代方法,用于发现数据中的频繁项集。该算法从频繁1-项集开始,逐步探索更高阶的频繁项集,通过连接和剪枝两步骤完成。
数据挖掘
2
2024-08-01
数据挖掘中的关联规则分析
关联挖掘应用于分析文献借阅历史数据,探讨图书馆数据与数据挖掘的相关文献。
数据挖掘
2
2024-07-13
数据挖掘中的关联规则分析
关联规则是指所有形如X ⇒ Y的蕴涵式,其中X和Y是数据项集,且X与Y没有交集。关联规则被认为是有趣的,如果它们满足最小支持度和最小置信度的阈值,这些规则被称为强规则。
数据挖掘
2
2024-07-18
Apriori算法:挖掘数据中的关联规则
Apriori算法:发现数据中的隐藏关系
Apriori算法是一种用于挖掘关联规则的经典算法。它通过迭代搜索频繁项集,并根据支持度和置信度等指标生成关联规则。换句话说,它可以帮助我们发现数据中隐藏的规律,例如“购买面包的顾客也经常购买牛奶”。
Apriori算法的核心思想是:如果一个项集是频繁的,那么它的所有子集也是频繁的。基于这个原理,算法逐步扩展项集的大小,并通过剪枝策略减少计算量。最终,我们可以得到所有频繁项集,并根据它们生成关联规则。
Apriori算法的应用非常广泛,例如:
市场篮子分析:分析顾客的购买行为,发现商品之间的关联关系,帮助商家进行商品推荐和促销。
网络安全:分析网络日志,发现异常行为模式,帮助识别潜在的安全威胁。
生物信息学:分析基因表达数据,发现基因之间的关联关系,帮助理解疾病的发生机制。
Apriori算法是一个简单而有效的关联规则挖掘算法,它可以帮助我们从数据中发现有价值的知识。
算法与数据结构
7
2024-04-29
SPSS-Clementine应用宝典-负关联规则挖掘算法的数据分析
在数据挖掘中,负关联规则挖掘算法主要探索形如A→┐B、┐A→B、┐A→┐B的蕴含关系,其中项集A的存在抑制了项集B的出现。这种挖掘方法突出了负相关的数据模式分析。
数据挖掘
0
2024-09-14
关联规则中Apriori算法的研究及优化探讨_王伟
在关联规则领域,Apriori算法作为一种经典算法,一直受到广泛关注和研究。探讨了如何优化Apriori算法以提高其在大数据环境下的效率和准确性。通过对算法参数和数据处理流程的调整,以及结合现代计算技术,可以有效地改进Apriori算法的性能。这些改进不仅提升了算法的执行速度,还增强了其对复杂数据集的适应能力。
MySQL
1
2024-07-31