本书全面解析数据挖掘概念,阐述各类模型,介绍实用方法和先进算法。
数据挖掘:理念、模型、方法及算法
相关推荐
数据挖掘:概念、模型、方法、算法
概念:探索和分析数据,发现隐藏模式和关系。
模型:描述和预测数据行为的数学或统计框架。
方法:获取和准备数据的过程,以及应用挖掘算法。
算法:用于发现数据中模式和关系的数学过程。
数据挖掘
12
2024-05-13
数据挖掘:概念、模型、方法和算法
这本关于数据挖掘的书籍深入探讨了该领域的核心理论和实践。全书共分为 13 章和 2 个附录,涵盖了数据挖掘的基本概念、完整流程、常用工具以及典型应用领域。本书内容严谨权威,结构合理,表述清晰流畅,非常适合作为高等院校数据挖掘课程的教材,也适合相关领域研究人员参考。
数据挖掘
6
2024-05-24
数据挖掘概念、模型、方法与算法
数据的真正意义在于其被挖掘后的表达。技术迭代推动了数据挖掘在编程领域的重要性。
数据挖掘
6
2024-08-05
数据挖掘:概念、模型、方法与算法解析
数据挖掘:概念、模型、方法与算法解析
本书深入探讨数据挖掘的核心概念、常用模型、方法和算法。从基础概念入手,逐步引导读者理解数据挖掘的本质和流程。涵盖数据预处理、关联规则挖掘、分类、聚类等关键技术,并结合实例阐述算法原理和应用。
数据挖掘
8
2024-05-19
数据挖掘:概念、模型、方法与算法探析
这本教科书全面阐述了数据挖掘的核心理论和实践方法,涵盖概念、模型、方法和算法等方面。全书共分为 13 章和 2 个附录,系统地讲解了数据挖掘的基础知识、完整流程、常用工具及其典型应用场景。本书内容严谨权威、结构合理、逻辑清晰、语言流畅,是高等院校数据挖掘课程的理想教材,同时也是数据挖掘研究人员不可或缺的参考书籍。
数据挖掘
9
2024-05-23
数据挖掘概念、模型、方法和算法详解
这本经典教材涵盖了数据挖掘的多个重要主题,包括决策树、计算机神经网络和数据库仓库。
数据挖掘
8
2024-07-17
数据挖掘概念、模型、方法和算法的综述
数据挖掘:概念、模型、方法和算法。这本书是一本优秀的数据挖掘入门指南。
数据挖掘
12
2024-07-18
TD数据仓库模型介绍及建模过程的逻辑数据模型设计理念
建立一个统一的、共享的基础数据平台,为各个业务部门的不同业务需求提供一致的、规范的数据;数据的组织围绕银行主要的主题领域进行,如客户、产品、账户和渠道等;一个可扩展的、动态的模型能够经得住时间的考验,当业务改变时(如改变组织结构和产品交易),能够将对数据模型的影响减至最小甚至完全不受影响; DW的数据模型应该是中性的,能够满足各种不同的分析逻辑的要求而设计的,因此它不同于通常所看到的为了支持某个特定的、预先定义的处理过程而设计的模型;数据模型涉及范围广阔,是多功能的和集成的;统一与共享,在于设计的整合。可扩展、动态—范式化/抽象化
算法与数据结构
7
2024-10-13
数据挖掘概念、模型、方法与算法的深入解析
数据挖掘是一种从海量数据中提取有价值知识的过程,它结合了计算机科学、统计学和机器学习等领域的技术。书籍《数据挖掘—概念、模型、方法和算法》深入浅出地介绍了数据挖掘领域的重要概念、核心模型、实用方法以及常用算法,为读者提供了一个全面的学习框架。
数据挖掘的概念
数据挖掘不仅是简单的数据查找或分析,而是通过复杂技术揭示隐藏在数据背后的模式、趋势和关系。这些发现可应用于预测、分类、聚类和关联规则学习,帮助企业和机构做出更明智的决策。
数据挖掘模型
本书涵盖了一系列常用的数据挖掘模型,包括决策树、随机森林、支持向量机(SVM)、神经网络、朴素贝叶斯、K均值聚类和Apriori关联规则等。每种模型都有其
数据挖掘
6
2024-10-26