建立一个统一的、共享的基础数据平台,为各个业务部门的不同业务需求提供一致的、规范的数据;数据的组织围绕银行主要的主题领域进行,如客户、产品、账户和渠道等;一个可扩展的、动态的模型能够经得住时间的考验,当业务改变时(如改变组织结构和产品交易),能够将对数据模型的影响减至最小甚至完全不受影响; DW的数据模型应该是中性的,能够满足各种不同的分析逻辑的要求而设计的,因此它不同于通常所看到的为了支持某个特定的、预先定义的处理过程而设计的模型;数据模型涉及范围广阔,是多功能的和集成的;统一与共享,在于设计的整合。可扩展、动态—范式化/抽象化
TD数据仓库模型介绍及建模过程的逻辑数据模型设计理念
相关推荐
TD数据仓库模型介绍及建模过程的产品主题特征
产品主题的特征在TD数据仓库模型中扮演重要角色,它们定义了数据存储和处理的方式。在建模过程中,确保这些特征能够充分体现产品的核心价值和功能。
算法与数据结构
2
2024-07-16
TD数据仓库模型介绍及建模流程详解
在模型设计流程中,首先进行模型培训,然后根据应用需求进行源系统调研和交流。接着进行表级和字段级分析,设计逻辑数据模型(LDM)并进行评审。在设计过程中考虑各种因素,优化实体和属性的结构,确保PDM的命名和字段类型合理。根据需求增加冗余字段和派生表,同时考虑大表的拆分及历史表的管理。最后,进行物理数据模型(PDM)的设计和评审,制定数据映射方案,开发ETL过程,并进行测试和上线前的评审工作。
算法与数据结构
0
2024-08-19
协议主题数据仓库模型介绍及建模过程
协议主题(Agreement)数据仓库模型是金融机构用来管理客户契约关系的数据模型。该模型涵盖了账户、合同、存款账户、贷款账户、凭证、投资成交单、卡访问介质、申请单等协议范畴。该模型用于存储和处理协议数据,以支持产品、事件、渠道、当事人、资产、财务、区域、营销、内部机构等方面的业务分析和决策制定。
算法与数据结构
6
2024-04-30
逻辑数据模型:数据仓库的基石
逻辑数据模型:数据仓库的核心
逻辑数据模型在数据仓库中扮演着关键角色,它连接着源数据和最终用于分析的应用数据模型。它负责:
存储和管理数据: 定义数据结构、组织和存储采集的数据,为后续分析奠定基础。
回答业务问题: 通过逻辑模型,可以将业务问题转化为数据查询,从而提取有价值的信息。
数据清洗和转换: 定义数据清洗和转换规则,确保数据质量和一致性。
支持多种应用: 为数据集市、商业智能 (BI) 工具和数据挖掘等应用提供数据基础。
建模方法论:
构建逻辑数据模型通常采用以下方法:
实体关系 (ER) 建模: 识别数据实体及其关系,构建实体关系图 (ERD)。
维度建模: 定义事实表和维度表,适用于分析型应用。
逻辑数据模型的价值:
数据理解和沟通: 提供清晰的数据视图,方便业务人员和技术人员理解数据。
数据质量保证: 通过定义数据规则,确保数据的一致性和准确性。
应用开发效率: 简化数据访问,提高应用开发效率。
逻辑数据模型是数据仓库建设的基石,它为数据整合、分析和应用提供了一个坚实的基础。
Hadoop
2
2024-04-29
TD数据仓库模型示例及建模流程详解
在数据仓库建模示例中,我们探讨了客户编号、姓名、建立日期、建立柜员、建立机构等重要信息的模型设计过程。更新过程涉及更新日期、更新柜员、更新网点等关键步骤。此外,我们还分析了客户状态、性别、国籍、出生日期、教育程度、婚姻状况等数据的建模需求。
算法与数据结构
0
2024-08-14
数据仓库中的元数据模型介绍及应用
元数据模型是关于现有操作型业务系统数据源的描述信息,包括物理数据结构、数据项的业务定义与更新频率、数据项的有效值以及其他具有相同业务含义的数据项清单。数据仓库的多维模型标准包括星型模型和雪花维模型,前者由维和事实表构成,后者由相互关联的多个维表组成,通过减少数据存储量增加模型的灵活性,但查询复杂化。时间维用来描述事实数据的时间属性,包括Year、Quarter、Month、Day、Hour、Minute、Second等层次。
Oracle
1
2024-08-03
传统金融服务模型与简化的交易模型TD数据仓库模型详解及建模流程
传统的金融服务模型和简化的交易模型在TD数据仓库模型中起着关键作用。传统的金融服务模型涉及账户、协议和客户等要素;而简化的交易模型包括交易和事件等要素。
算法与数据结构
3
2024-07-13
Teradata行业逻辑数据模型与建模过程解析
Teradata行业逻辑数据模型助力企业数据化转型
Teradata行业逻辑数据模型为各行业提供了一套经过验证的数据仓库解决方案,帮助企业快速构建高效、灵活、可扩展的数据仓库系统。
支持行业:
金融服务业 (Financial Services)
卫生保健业 (Healthcare)
制造业 (Manufacturing)
通讯业 (Communications)
媒体娱乐业 (Media and Entertainment)
旅游业 (Travel)
运输业 (Transportation)
零售业 (Retail)
公用事业 (Utility)
Teradata数据仓库建模过程:
业务需求分析: 深入了解企业业务目标和数据需求,确定数据仓库范围和目标。
概念模型设计: 基于业务需求,构建高层次的概念数据模型,明确关键实体和关系。
逻辑模型设计: 将概念模型转化为详细的逻辑数据模型,定义数据结构、属性和关系。
物理模型设计: 根据目标数据库平台(如Teradata),将逻辑模型映射为物理数据模型,包括表、索引、分区等设计。
数据加载和ETL: 建立数据抽取、转换和加载 (ETL) 流程,将源系统数据迁移至数据仓库。
数据仓库部署和测试: 部署数据仓库环境,并进行严格测试,确保数据质量和系统性能。
Teradata行业逻辑数据模型和成熟的建模方法论为企业提供了坚实基础,助力企业快速构建数据驱动的决策支持系统,实现数据价值最大化。
算法与数据结构
3
2024-05-25
数据模型简介及建模过程详解
数据模型是描述事物符号记录的工具,通过抽象实体及其关系来表示现实世界中事务的相互关系。数据模型包括数据结构、数据操作和完整性约束三要素,用于确保数据的正确性和有效性。常见的数据模型有实体-联系(E-R)模型,用于在计算机上实现和理解现实世界的数据结构。
算法与数据结构
2
2024-07-16