MATLAB部分代码无法运行。在这个麻省理工学院的IAP中,我将分享有关实际监督学习中经常使用的概念和算法。我希望这个IAP能够激励您在研究中应用机器学习,并且有助于理解机器学习文献。机器学习是一个广阔的领域,我无法涵盖所有ML的方面和主题。但好消息是,学习两种主要算法就足以支持几乎所有监督学习的实际需求:基于决策树的模型(如随机森林和梯度提升机),用于结构化数据的成功应用,以及神经网络,主要用于非结构化数据,如音频、视觉和自然语言。尽管最近在结构化数据中也变得流行,但它在非结构化数据中非常成功。大多数其他ML算法已经过时或在大多数情况下不太有用。本课程不会深入推导和证明,而是着重于直觉理解ML模型的工作方式,帮助您编写有效的代码。这与传统的学术课程截然不同,后者通常严谨详细解释每个概念的各个方面。每节课分为教学内容和jupyter笔记本。