《数据挖掘概念与技术第三版中文版》由韩家炜撰写,涵盖了前三章的内容。
数据挖掘技术概述及应用
相关推荐
数据挖掘技术概述及应用
《数据挖掘:概念与技术》是一本经典的教程,由韩家炜教授译成,图文并茂,易于理解。本书涵盖了数据挖掘领域的多个知识点,包括聚类、rough集和决策树等,其中的算法也十分易于理解。
数据挖掘
2
2024-07-18
数据挖掘技术及其应用概述
浙江大学控制科学与工程学系研究生课程,主要探讨数据挖掘技术的纯理论和应用。课程内容涵盖广泛,适合具备一定数据挖掘理论基础的学者学习。所有内容均以PPT格式呈现。
数据挖掘
3
2024-07-16
数据挖掘技术及其应用概述
数据挖掘技术涵盖了描述型和预言型两大类,通过多种算法和模型实现数据的有效分析和提取。其过程包括数据准备、模型建立、模式评估和部署等关键步骤。
数据挖掘
3
2024-07-18
数据挖掘概述及其核心内容
这本由Michigan State University的Pang-Ning Tan和University of Minnesota的Michael Steinbach合著的书籍,详细阐述了数据挖掘的四大核心部分:可视化、相关性分析、分类和聚类分析的概念及其相关算法。同时,本书也是斯坦福大学数据挖掘课程(Stats 202 Data Mining)的教材。该书以英文PDF版本发布,使用了快速压缩技术。
数据挖掘
0
2024-09-14
RAC技术概述及环境设计
在RAC部署过程中,涉及到系统环境的配置和SGA以及PGA单点故障问题的解决。
Oracle
0
2024-09-28
数据挖掘技术概述
《数据挖掘概念与技术》的中文版是一本经典教材,首次出版于2000年。它详尽地介绍了数据挖掘的基本概念和技术应用。
数据挖掘
2
2024-07-15
数据挖掘技术概述
这本书详细介绍了数据挖掘的各种技术,是数据科学领域中最经典的英文书籍之一。
数据挖掘
3
2024-07-18
数据挖掘技术概述
介绍数据挖掘技术的基本原理及其在处理PPty文件方面的应用。数据挖掘技术通过分析大数据集,发现隐藏在其中的模式和关联,为信息处理和决策提供支持。PPty文件是一种常见的数据格式,数据挖掘技术能够有效地从中提取有用信息,帮助用户理解和利用数据。
数据挖掘
0
2024-08-25
数据挖掘技术概述.pdf
数据挖掘技术概述####导论和数据挖掘概述数据挖掘是一门新兴的跨学科领域,从大量、不完整、噪声干扰、模糊不清及随机存在的实际数据中,提取事先未知但潜在有用的信息和知识。本书《数据挖掘技术概述》由韩家炜编写,基于J. Han和M. Kamber的原著,由Morgan Kaufmann出版社于2000年出版。 - 数据挖掘的重要性及应用场景:数据挖掘在于帮助企业和组织从海量数据中发现有价值的模式,这些模式可用于指导决策、优化业务流程和提高效率。 - 数据挖掘的定义:数据挖掘是一种从大数据中提取有用信息的过程,包括数据清洗、数据转换和应用数据挖掘算法等多个步骤。 - 适用数据类型:数据挖掘可应用于多种数据集,如关系数据库、数据仓库、事务数据库及高级数据库系统和应用。 ####数据挖掘的功能及模式- 概念/类描述:通过提取数据集特征描述或区分不同类别。 - 关联分析:发现数据项之间的有趣关联或相关性,如市场篮分析。 - 分类与预测:建立模型预测新数据的类别或值。 - 聚类分析:将相似数据对象分组形成聚类。 - 异常检测:识别与大多数对象显著不同的异常对象。 - 时间序列分析:分析数据随时间变化的模式。 ####数据挖掘的挑战及问题- 有趣模式的发现:数据挖掘可能会发现大量模式,但真正有价值的可能很少。 - 数据挖掘系统分类:根据不同标准,数据挖掘系统可分不同类型。 - 主要问题:如数据质量、隐私保护及挖掘结果解释是数据挖掘实践中的关键挑战。 ####数据仓库与OLAP技术- 数据仓库:为数据分析设计的数据库,包含历史数据并优化以支持快速查询。 - OLAP技术:在线分析处理,支持复杂多维数据分析。
数据挖掘
0
2024-09-16