找到K个最近邻居:使用knnclassify函数进行分类。输入包括测试集、训练集、组、K值、距离和规则。矩阵组按行分组,K表示用于分类的最近邻居数量。距离度量采用欧几里得规则。输出显示每一行测试数据的最近邻居类别。
最近邻居分类算法的精确度、准确度和召回率分析MATLAB开发
相关推荐
决策树算法的准确度评估
在评估决策树算法的准确度时,通常使用召回率 (Recall) 和精准率 (Precision) 两个指标。理想的分类器应该同时具备高召回率和高精准率。然而实际应用中,这两个指标往往相互制约,需要根据具体情况进行权衡和取舍。
算法与数据结构
3
2024-05-20
圆形物体的检测准确度
使用Matlab程序识别圆形目标的方法。
Matlab
1
2024-07-31
k最近邻(kNN)分类器多类分类中的应用-matlab开发
功能1. kNNeighbors.predict() 2. kNNeighbors.find()描述1.返回一个或多个测试实例的估计标签。 2.返回k个最接近的训练实例的索引及其距离。 使用鸢尾花数据集的示例加载fisheriris X =测量值; Y =物种; Xnew = [min(X);mean(X);max(X)]; k = 5;公制= '欧几里得'; mdl = kNNeighbors(k,metric); mdl = mdl.fit(X,Y); Ypred = mdl.predict(Xnew) Ypred = 'setosa' '杂色' '弗吉尼亚' Ynew = {'versicolor';'virginica'};准确率=accuracy_score(Ypred,Ynew)精度= 0.6667
Matlab
3
2024-07-28
高斯和近邻均值分类器评估其分类错误率的MATLAB开发
这个MATLAB文件专注于解决三类模式分类问题。它根据每个模式类的参数生成一百个随机样本,用于计算类条件密度。文件进一步实现了高斯分类器,使用等先验类概率对每个类的测试样本进行分类,并实现了近邻均值分类器,同样使用等先验类概率。最终评估了每个分类器在样本集上的分类错误率。详细信息请参阅M文件。
Matlab
2
2024-07-25
算法时间复杂度和增长率的计算方法
这篇实验报告分析了算法分析与设计课程中关于时间复杂度和增长率的重要性,并提出了计算这些概念的方法。
算法与数据结构
3
2024-07-29
MATLAB Adaboost分类实现与准确率测试
MATLAB版的Adaboost对数据集进行分类,并测试其准确率,详细步骤可参考readme.txt文件。通过此实现,可以快速进行数据分类任务,并对模型效果进行评估,适用于机器学习模型训练与性能测试。
Matlab
0
2024-11-05
基于最近邻规则的聚类算法实验
最近邻规则聚类算法的实验要求是编写一个使用欧式距离度量的聚类算法,可以设置阈值。通过在二维特征空间中验证,使用10个样本数据(如:x1 = (0,0),x2 = (3,8),x3 = (2,2),等)。这些实验探索最近邻规则在聚类过程中的应用。
Matlab
0
2024-08-23
求解MATLAB中系统的相角裕度和增益裕度
已知系统的开环传递函数为num=1,den=[1,0.4,1],通过MATLAB求解系统的相角裕度和增益裕度。执行命令[bode(num,den)]得到频率响应曲线[mag,phase,w],然后使用[margin(mag,phase,w)]命令获取系统的相角裕度和增益裕度[gm,pm,wcg,wcp]。
Matlab
2
2024-07-30
Matlab实现重复剪辑代码——提高分类准确率
当不同类别的样本在分布上有交迭部分时,分类的错误率主要来自于处于交迭区中的样本。如图所示,这些样本往往由于近邻法的限制,导致分类错误。具体来说,交界处的样本相互穿插,给分类算法带来困难。为了改善这一情况,可以通过对现有样本集进行剪辑,筛选出处于交界区域的样本,从而有效减少样本量,同时提高识别准确率。利用Matlab实现这一过程,可以优化分类效果,减少计算负担。
Matlab
0
2024-11-06