这份资源是作者独创,网上未见其它相似版本。它详细演示了如何从语音数据中提取二进制参数,适用性高,难度适合本科毕业设计。
语音特征参数提取的Matlab实现
相关推荐
MATLAB提取语音特征代码示例
以下是提取语音特征的MATLAB代码,主要包括短时能量、平均幅度和平均过零率的计算。该代码将帮助你分析语音信号的特性。
Matlab
5
2024-11-04
Tamura 纹理特征提取的 Matlab 实现
提供了使用 Matlab 实现 Tamura 纹理特征提取的代码示例,涵盖了粗糙度、对比度、方向性等关键特征的计算方法。
Matlab
12
2024-06-01
MATLAB代码示例提取均值信号特征的实现
这里是PhysioNet/CinC Challenge 2021的MATLAB示例代码,展示了如何使用年龄、性别和ECG导联信号的均方根作为特征来实现线性回归模型分类器。该示例包含两个主要部分:训练部分演示了如何读取数据并训练多类线性回归模型,测试部分则展示了如何基于训练好的模型进行分类和预测。运行这些脚本的方法是启动MATLAB,并依次执行train_model(training_data, model)和test_model(model, test_data, test_outputs)。请注意,这些示例代码的设计目的是为了演示如何设置MATLAB环境以应对挑战,并不适用于模型性能评估。
Matlab
8
2024-08-10
图像分割与特征提取的MATLAB实现
这份资源展示了如何利用MATLAB进行图像分割并提取特征,已通过调试验证,希望能够为他人提供启发。
Matlab
10
2024-08-10
BP神经网络语音信号特征分类的MATLAB实现
BP神经网络(全称:Backpropagation Neural Network)是一种在机器学习领域广泛应用的多层前馈网络。它通过反向传播算法调整网络权重,以最小化预测结果与实际结果之间的误差,从而实现数据分类和预测。在这个案例中,我们将探讨如何利用MATLAB这一强大的数值计算软件,基于BP神经网络进行语音信号特征分类。
语音特征信号分类是语音识别和处理的重要部分,涉及将语音信号转化为一系列有意义的特征参数,如梅尔频率倒谱系数(MFCC)、零交叉率、能量等,这些参数有助于区分不同的语音类别。MATLAB提供了丰富的信号处理和神经网络库,是实现这一任务的理想工具。
首先,在MATLAB中,我
算法与数据结构
4
2024-11-06
基于改进霍夫曼算法的圆形特征提取MATLAB实现
算法概述
本程序采用改进的霍夫曼算法进行圆形特征提取,该算法于2012年实现并经过重新编辑。程序内部包含详细注释,阐述了圆心定位的关键步骤。
算法改进
相较于传统霍夫曼算法,本程序进行了三处改进,并留有进一步优化的空间。* 改进点1* 改进点2* 改进点3
交流与改进
欢迎对圆形特征提取算法感兴趣的朋友留言交流,共同探讨算法的优化方向。本程序可为相关领域毕设提供参考。
Matlab
13
2024-04-30
MATLAB实现欧拉方法的动态系数识别与参数提取
使用Newton-Euler算法,针对罗马萨皮恩扎大学机器人II课程项目资料库中的3R空间拟人和7R KUKA LWR IV +机械手,提供MATLAB代码用于识别动态系数和提取动态参数。分别包括无摩擦和带摩擦建模的代码,探索内部扳手的物理约束对参数的影响。
Matlab
7
2024-09-30
Matlab指纹特征提取程序
根据《基于Matlab实现的指纹图像细节特征提取》一文,编写了这个程序。
Matlab
12
2024-08-12
使用Matlab提取目标区域的形状特征
这个例子展示了如何使用Matlab提取叶片的形状参数。如果您对此感兴趣,可以参考这个例子并进行修改。
Matlab
6
2024-07-23