异常(Outlier)指的是数据集中与大部分数据显著偏离的数据点,其偏离程度超出随机因素的范围,可能源于完全不同的生成机制。根据Hawkins的定义,异常是数据中那些使人怀疑其生成方式不同于其他数据的点。根据Weisberg的看法,异常是不符合数据集其他部分统计模型的数据。Samuels认为,异常是与数据集中其余部分显著不同的数据点。Porkess指出,异常是远离数据集中其他数据点的极端值。
异常(Outlier)的定义及检测方法
相关推荐
高维数据中的异常检测-综述异常检测方法
高维数据的异常探测方法由Aggarwal和Yu (SIGMOD’2001)提出。该方法将高维数据集映射到低维子空间,通过评估子空间中数据的稀疏性来识别异常数据。
算法与数据结构
3
2024-07-22
Oracle预设异常的定义
Oracle数据库中的预设异常是预先定义好的一些异常情况,用于在特定条件下触发处理程序。这些异常提供了数据库管理和开发人员处理错误和异常情况的有效方式。通过预设异常,可以更精确地捕获和处理数据库操作中可能发生的问题,确保系统运行的稳定性和可靠性。
Oracle
2
2024-07-27
异常检测算法综述基于不同方法的异常探测分类
异常检测方法可以基于多种不同的方法进行分类:包括统计学方法、距离度量方法、偏差检测方法和密度估计方法。这些方法在处理高维数据时也有各自的应用场景。
算法与数据结构
2
2024-07-20
异常数据检测方法综述(2009年)
研究了数据挖掘中异常点检测的通用方法,并分析了它们的优缺点。还探讨了在高维和基于聚类的异常点挖掘中的应用情况,希望为进一步改进提供基础。
数据挖掘
2
2024-07-16
Opprentice基于机器学习的运维异常检测方法
是智能运维方向论文中较早而且较有影响力的一篇文章,首次提出使用机器学习的方法来帮助运维人员自动配置异常检测器,并且取得的较好的性能。虽然有监督的方式仍具有局限性,并且最终的性能指标并不是很高,但Opprentice系统的提出仍然为实际运维中异常检测的工作有很大借鉴价值。在此,简单对该文章进行翻译,供英语水平不高的同学快速浏览,了解文章的主要思想和大致路线,以提高读文章的速度。原本想复现一下,后来看到裴丹老师的一些新论文中,已经找到了更好的解决方式,其中有一篇WWW2018的文章还有代码,准备先看新文章了。GITHUB上有这篇文章的部分代码重现,文末参考资料中有链接,如果有完整重现,请联系我分享一下。
算法与数据结构
0
2024-11-01
自定义异常处理
用户可以创建自定义异常来处理应用程序中的错误。通过 RAISE 语句调用异常处理。当程序块中出现异常时,异常会被传播到包含块或引发该异常的块中。如果当前块没有为特定异常设置处理程序,则异常将传播到包含块。值得注意的是,在声明部分或异常处理部分引发的异常将立即传播给包含块。
Oracle
7
2024-05-13
PL/SQL用户自定义异常处理及应用实例
在PL/SQL编程中,用户自定义的异常处理可以有效地捕捉和处理程序中可能出现的特定异常。当与某个异常错误相关的错误发生时,PL/SQL会自动触发该异常。用户定义的异常通常通过显式使用RAISE语句来触发。一旦异常被引发,控制会跳转到EXCEPTION块中的相应处理部分,执行定义的错误处理逻辑。
以下是一个简单的PL/SQL示例,展示了如何定义和处理自定义异常:
DECLARE
V_EMPNO EMP.EMPNO%TYPE := &EMPNO
NO_RESULT EXCEPTION;
BEGIN
UPDATE EMP SET SAL = SAL + 100 WHERE EMPNO = V_EMPNO;
IF SQL%NOTFOUND THEN
RAISE NO_RESULT;
END IF;
EXCEPTION
WHEN NO_RESULT THEN
DBMS_OUTPUT.PUT_LINE('你的数据更新语句失败了!');
WHEN OTHERS THEN
DBMS_OUTPUT.PUT_LINE(SQLCODE || '---' || SQLERRM);
END;
在此示例中,当SQL%NOTFOUND返回为真时,系统会通过RAISE NO_RESULT显式触发异常,并转向EXCEPTION块。这里,NO_RESULT异常会被捕获并输出特定的错误信息。
此外,还可以使用RAISE_APPLICATION_ERROR函数来引发自定义的应用程序错误。例如:
RAISE_APPLICATION_ERROR(20001, '该员工不存在!');
这种方式可以让开发人员更精确地控制错误信息和处理流程。
Oracle
0
2024-11-05
异常入侵检测技术探究
异常入侵检测技术探究
异常入侵检测,作为网络与信息安全领域的至关重要一环,其主要方法包括:
统计异常检测: 通过建立系统正常行为的统计模型,识别偏离模型的异常行为。
基于特征选择的异常检测: 提取网络流量或系统行为的关键特征,利用特征差异识别异常。
基于贝叶斯推理的异常检测: 利用贝叶斯定理计算事件发生的概率,判断异常出现的可能性。
基于贝叶斯网络的异常检测: 构建网络结构表达变量之间的依赖关系,通过概率推理进行异常检测。
基于模式预测的异常检测: 学习正常行为模式,预测未来行为,将与预测不符的行为判定为异常。
基于神经网络的异常检测: 利用神经网络强大的自学习能力,构建模型识别复杂非线性关系,从而检测异常。
基于贝叶斯聚类的异常检测: 根据数据间的相似性进行聚类,将孤立点或不属于任何簇的数据视为异常。
基于机器学习的异常检测: 利用机器学习算法训练模型,识别异常模式。
基于数据挖掘的异常检测: 从海量数据中挖掘潜在的异常模式,提升检测效率和准确性。
数据挖掘
6
2024-05-23
时序数据异常检测的综述
随着时间数据分析领域的发展,时序数据异常检测变得越来越重要。这项技术专注于识别时间序列中的异常模式和趋势,为数据分析和预测提供可靠的基础。通过应用先进的算法和技术,研究人员能够有效地监测和分析数据中的异常点,进而改进预测模型的准确性和可靠性。
算法与数据结构
2
2024-07-14