随着时间数据分析领域的发展,时序数据异常检测变得越来越重要。这项技术专注于识别时间序列中的异常模式和趋势,为数据分析和预测提供可靠的基础。通过应用先进的算法和技术,研究人员能够有效地监测和分析数据中的异常点,进而改进预测模型的准确性和可靠性。
时序数据异常检测的综述
相关推荐
pyculiarity 时序数据异常检测
pyculiarity 用于时序数据异常检测,能有效识别异常值。
数据挖掘
2
2024-05-13
高维数据中的异常检测-综述异常检测方法
高维数据的异常探测方法由Aggarwal和Yu (SIGMOD’2001)提出。该方法将高维数据集映射到低维子空间,通过评估子空间中数据的稀疏性来识别异常数据。
算法与数据结构
3
2024-07-22
时序数据的自相关分析图像和时序数据的自相关计算及其应用
特里斯坦·乌塞尔在2018年8月提出了一种新的自相关计算方法,称为imageautocorr。这种方法可以对时序数据或图像进行自相关分析,输出归一化相关系数在-1到1之间的自相关矩阵。用户可以通过不同的输入方式调用imageautocorr函数,包括直接加载图像文件或数据路径。这种方法不仅适用于图像数据,也可以用于任何类型的有序数据,为研究和应用提供了广泛的可能性。
Matlab
0
2024-10-01
城市轨道客流时序数据
城市轨道客流时序数据集提供城市轨道客流的时序数据。
统计分析
3
2024-05-15
基于统计的异常检测算法综述
基于统计的方法假设给定的数据集服从某种随机分布,通过不一致性测试来识别异常。然而,在实际应用中,数据往往不符合理想的数学分布,尤其是在高维情况下,估计数据点的分布变得极其困难。
算法与数据结构
0
2024-08-16
异常数据检测方法综述(2009年)
研究了数据挖掘中异常点检测的通用方法,并分析了它们的优缺点。还探讨了在高维和基于聚类的异常点挖掘中的应用情况,希望为进一步改进提供基础。
数据挖掘
2
2024-07-16
IBM Informix 12.1 时序数据用户指南
Informix 是 IBM 旗下的关系型数据库管理系统,作为 IBM 在线事务处理的旗舰级数据服务系统,该产品将作为集成解决方案提供。IBM 将持续规划 Informix 和 DB2 的发展,使这两个数据库产品相互借鉴技术优势。IBM 在 2005 年初发布了 Informix Dynamic Server(IDS)第 10 版。目前最新的版本是 IDS11(v11.50,代号为“Cheetah 2”),于 2008 年 5 月 6 日全球同步上市。
Informix
3
2024-04-29
异常检测算法综述基于不同方法的异常探测分类
异常检测方法可以基于多种不同的方法进行分类:包括统计学方法、距离度量方法、偏差检测方法和密度估计方法。这些方法在处理高维数据时也有各自的应用场景。
算法与数据结构
2
2024-07-20
单元划分法异常检测算法综述
该方法将数据空间分割为单元,单元长宽为 D/(2k1/2)。每个单元包含两层包围层:内层厚度为 1 倍单元长度,外层厚度为 int(2k1/2 -1)+1 倍单元长度。异常判定:- 若 cell_+1_layer_count > M,则单元中的对象均为非异常。- 若 cell+_2_layer_count
算法与数据结构
3
2024-05-26