§7.3讨论Euclid空间V中的线性函数及其定义。一个实函数f(α),其中α ∈ V,如果对所有λ, λ ∈ R和α, α ∈ V,满足f(λα + λα) = λ f(α) + λ f(α),则称其为V上的线性函数。例如,对于定向量β ∈ V,内积(α, β)也是V上的线性函数,记作fβ(α)。进一步,如果f(α)是V上的线性函数,则f() = 。对于任意λ, λ, . . . , λk ∈ R和α, α, . . . , αk ∈ V,有f( k ∑ j= λ jα j) = k ∑ j= λ j f(α j)。记Euclid空间V上所有线性函数的集合为V∗。定义V∗中的加法操作为f与f ∈ V∗时,对任意α ∈ V,有f + f(α) = f(α) + f(α)。