MATLAB数据分析与挖掘实战课程及代码资源包括详细的课件和配套代码,内容完整且易于理解。
MATLAB数据分析与挖掘实战课程及代码资源
相关推荐
Python大数据分析与挖掘实战书本部分代码优化
Python大数据分析与挖掘是当前信息技术领域的热门话题,结合了强大的编程语言Python与数据分析工具,为处理海量数据提供了高效且灵活的解决方案。本书由黄恒秋、莫洁安、谢东津、张良均等多位专家合著,帮助读者深入理解并实践Python在大数据领域的应用。Python作为一门易学易用的编程语言,其丰富的库如Pandas、NumPy、Matplotlib以及Scikit-learn等,使得数据清洗、预处理、统计分析和机器学习变得简单。Pandas提供高效的数据结构DataFrame,便于数据操作;NumPy则提供了用于数值计算的多维数组;Matplotlib则用于数据可视化,帮助我们理解数据的分布和趋势;而Scikit-learn则是一个强大的机器学习库,包含多种监督和无监督学习算法。本书涵盖了多个单元,包括基础知识、数据处理、统计分析、数据可视化和机器学习算法的详细介绍,以及实际应用案例和示例代码。
数据挖掘
2
2024-07-18
SPSS v-18 数据分析与挖掘实战指南
深入掌握 SPSS v-18 版本核心功能,探索数据挖掘的奥秘。
本指南将带您逐步了解 SPSS v-18 的操作界面和功能模块,并结合实例解析数据挖掘的理论基础与实践应用。通过学习,您将能够:
熟练运用 SPSS 进行数据整理、分析和可视化;
理解数据挖掘的基本原理和常用算法;
掌握数据挖掘在各个领域的应用场景和案例分析。
指南内容涵盖:
SPSS v-18 软件界面与基本操作
数据预处理与数据清理技术
描述性统计分析与推断性统计分析
数据挖掘算法原理与应用 (如分类、聚类、关联规则等)
SPSS Modeler 图形化界面操作
数据挖掘案例解析
适用人群:
数据分析师、市场研究人员、科研人员
高校学生、教师以及对数据分析感兴趣的各界人士
学习本指南,您将能够有效提升数据分析技能,并利用数据挖掘技术发现数据背后的价值!
数据挖掘
3
2024-05-06
《RapidMiner数据分析与挖掘实战》第8章关联分析与关联规则
关联规则分析是数据挖掘中非常重要的一种方法,从数据集中发掘各项之间的潜在关联关系,这些关系并未在数据中明确显示。 8.1.1 常用关联规则算法列出了几种常见的关联算法,如表8-1所示。
算法与数据结构
2
2024-07-12
大数据分析与挖掘
第一章:数据分析基础理论- 数据分析概述- 大数据分析基础- 大数据预测分析
第二章:计算机数据分析SPSS Modeler- SPSS Modeler概述- SPSS Modeler节点介绍
第三章:计算机数据分析Hadoop- 大数据平台Hadoop
算法与数据结构
5
2024-04-30
Scala与Spark:大数据分析实战
Scala与Spark:大数据分析利器
掌握Scala语言,驾驭Spark框架,释放大数据潜力
本资源深入探讨Scala编程语言在Spark大数据处理框架中的应用。通过实例演示,您将学习如何:
利用Scala简洁的语法进行数据操作
使用Spark连接并处理HDFS上的海量数据
与MySQL数据库进行交互,实现数据提取与存储
运用Spark SQL进行数据分析与挖掘
构建高效的大数据处理流程
探索Scala与Spark的强大组合,开启您的数据科学之旅!
Hadoop
4
2024-04-30
Scala 与 Spark 大数据分析实战
Scala 与 Spark 大数据分析实战
Md. Rezaul Karim 著
本书深入讲解如何利用 Scala 编程语言的强大功能,结合 Spark 大数据处理框架,高效地分析海量数据。
主要内容:
掌握 Scala 语言的精髓,包括面向对象编程和函数式编程范式
探索 Spark 的多种应用场景,从简单的批处理作业到实时流处理和机器学习
通过实际案例学习如何使用 Spark 进行大规模数据分析
适合人群:
渴望学习 Spark 大数据分析技术的开发者
对 Scala 语言感兴趣,并希望将其应用于数据分析领域的程序员
学习收获:
深入理解 Scala 的面向对象和函数式编程概念
掌握 Spark 的核心原理和使用方法
能够使用 Spark 进行各种数据分析任务,例如数据清洗、转换、聚合等
构建基于 Spark 的机器学习模型
无需 Spark 或 Scala 经验,但具备编程经验(尤其是 JVM 语言)将有助于更快掌握相关概念。
spark
3
2024-04-29
探秘数据异常:解读《RapidMiner数据分析与挖掘实战》第18章
在数据科学领域,发现“特立独行”的数据至关重要。与常见的数据规律不同,这些被称为“离群点”的数据,往往蕴藏着独特的价值。虽然传统的数据挖掘方法倾向于将它们视为噪音过滤,但在特定研究领域,这些“非主流”数据可能揭示更深层次的规律,为我们提供新的研究视角。
算法与数据结构
2
2024-05-24
优化数据分析与挖掘技术
数据分析和数据挖掘是从数据中提取有价值信息的关键技术,尽管二者有相似之处,但在方法和应用上存在显著差异。数据挖掘通常需要编程技能来实现,而数据分析则更多依赖于现有分析工具。在行业知识方面,数据分析需要深入理解特定行业并将数据与业务结合,而数据挖掘则注重技术和数学计算。尽管如此,它们都涉及从大数据中提取信息,以支持决策和创新。
数据挖掘
2
2024-07-13
Python预测之美-数据分析与算法实战的代码维护
数据结构是计算机存储和组织数据的方式,涉及数据的逻辑结构、物理结构及基本操作。数据结构选择影响程序效率、可读性和可维护性。常见数据结构包括数组、链表、栈、队列、树和图。算法是解决问题的步骤,涉及数据运算和操作的详细描述。算法设计和选择直接影响程序效率,需考虑时间复杂度、空间复杂度等因素。数据结构与算法密不可分,理解和运用数据结构、学习研究算法,可提升编程能力,有效解决实际问题。
算法与数据结构
2
2024-07-13