Python大数据分析与挖掘是当前信息技术领域的热门话题,结合了强大的编程语言Python与数据分析工具,为处理海量数据提供了高效且灵活的解决方案。本书由黄恒秋、莫洁安、谢东津、张良均等多位专家合著,帮助读者深入理解并实践Python在大数据领域的应用。Python作为一门易学易用的编程语言,其丰富的库如Pandas、NumPy、Matplotlib以及Scikit-learn等,使得数据清洗、预处理、统计分析和机器学习变得简单。Pandas提供高效的数据结构DataFrame,便于数据操作;NumPy则提供了用于数值计算的多维数组;Matplotlib则用于数据可视化,帮助我们理解数据的分布和趋势;而Scikit-learn则是一个强大的机器学习库,包含多种监督和无监督学习算法。本书涵盖了多个单元,包括基础知识、数据处理、统计分析、数据可视化和机器学习算法的详细介绍,以及实际应用案例和示例代码。
Python大数据分析与挖掘实战书本部分代码优化
相关推荐
Python金融大数据分析实战
聚焦金融行业,这套大数据挖掘分析实战教程整合了从理论到实践所需的全部资料,包括详细的文档讲解、完整的代码实现以及相关软件工具。
数据挖掘
2
2024-05-23
大数据分析与挖掘
第一章:数据分析基础理论- 数据分析概述- 大数据分析基础- 大数据预测分析
第二章:计算机数据分析SPSS Modeler- SPSS Modeler概述- SPSS Modeler节点介绍
第三章:计算机数据分析Hadoop- 大数据平台Hadoop
算法与数据结构
5
2024-04-30
Python大数据分析项目实战完整视频+课件+代码+软件工具
本课程详细讲解PySpark在电商分析中的应用,涵盖Python和Spark SQL、SparkStream、Hive等技术,提供完整的视频讲解、课件、代码及相关软件工具。原本用于内部培训,现向公众免费开放。
spark
0
2024-09-13
Scala与Spark:大数据分析实战
Scala与Spark:大数据分析利器
掌握Scala语言,驾驭Spark框架,释放大数据潜力
本资源深入探讨Scala编程语言在Spark大数据处理框架中的应用。通过实例演示,您将学习如何:
利用Scala简洁的语法进行数据操作
使用Spark连接并处理HDFS上的海量数据
与MySQL数据库进行交互,实现数据提取与存储
运用Spark SQL进行数据分析与挖掘
构建高效的大数据处理流程
探索Scala与Spark的强大组合,开启您的数据科学之旅!
Hadoop
4
2024-04-30
Scala 与 Spark 大数据分析实战
Scala 与 Spark 大数据分析实战
Md. Rezaul Karim 著
本书深入讲解如何利用 Scala 编程语言的强大功能,结合 Spark 大数据处理框架,高效地分析海量数据。
主要内容:
掌握 Scala 语言的精髓,包括面向对象编程和函数式编程范式
探索 Spark 的多种应用场景,从简单的批处理作业到实时流处理和机器学习
通过实际案例学习如何使用 Spark 进行大规模数据分析
适合人群:
渴望学习 Spark 大数据分析技术的开发者
对 Scala 语言感兴趣,并希望将其应用于数据分析领域的程序员
学习收获:
深入理解 Scala 的面向对象和函数式编程概念
掌握 Spark 的核心原理和使用方法
能够使用 Spark 进行各种数据分析任务,例如数据清洗、转换、聚合等
构建基于 Spark 的机器学习模型
无需 Spark 或 Scala 经验,但具备编程经验(尤其是 JVM 语言)将有助于更快掌握相关概念。
spark
3
2024-04-29
MATLAB数据分析与挖掘实战课程及代码资源
MATLAB数据分析与挖掘实战课程及代码资源包括详细的课件和配套代码,内容完整且易于理解。
算法与数据结构
2
2024-07-15
Python数据挖掘实战:案例与代码解析
凝聚了十多位数据挖掘领域资深专家和科研人员,以及超过十年的行业经验,本书以电力、航空、医疗、互联网、生产制造和公共服务等领域的真实案例为主线,以深入浅出的方式讲解Python数据挖掘建模过程,极具实战性。
全书共15章,分为基础篇和实战篇两部分。基础篇阐述数据挖掘的基本原理,实战篇则以一个个真实案例为切入点,通过对案例的深入剖析,帮助读者在实践中积累项目经验,并快速掌握数据挖掘的理论知识。
本书鼓励读者充分利用随书提供的案例建模数据和相关工具进行上机实验,以加深对相关知识和理论的理解。
数据挖掘
3
2024-05-28
Python数据分析实战AQI分析详解
将详细介绍Python数据分析中AQI分析的基本流程,包括明确需求和目的、数据收集、数据预处理(包括数据整合、数据清洗)、以及描述性统计分析、推断统计分析和相关系数分析等内容。
统计分析
2
2024-07-15
Python预测之美-数据分析与算法实战的代码维护
数据结构是计算机存储和组织数据的方式,涉及数据的逻辑结构、物理结构及基本操作。数据结构选择影响程序效率、可读性和可维护性。常见数据结构包括数组、链表、栈、队列、树和图。算法是解决问题的步骤,涉及数据运算和操作的详细描述。算法设计和选择直接影响程序效率,需考虑时间复杂度、空间复杂度等因素。数据结构与算法密不可分,理解和运用数据结构、学习研究算法,可提升编程能力,有效解决实际问题。
算法与数据结构
2
2024-07-13