在以往的研究中,我们已经研究了在确定性字符串上的窗口子序列匹配,涉及到知识发现、数据挖掘和分子生物学等领域。然而,在应用中我们观察到,在数据流监测、复杂事件处理以及时间序列数据处理中,字符串往往是嘈杂且具有概率性质。探讨了这一问题的在线设置,其中效率至关重要。我们首先定义了查询语义,并提出了一个精确算法。接着,我们提出了一个随机近似算法,其速度更快,并且在一定程度上保证了准确性。此外,我们设计了一种过滤算法,进一步提升了效率,采用了一种适应序列流内容的优化技术。最后,我们针对带有否定模式的算法进行了提出。为了验证这些算法,我们使用了三个真实数据集和一些合成数据集进行了系统的实证研究。
概率序列上的在线窗口子序列匹配
相关推荐
在线时间序列数据挖掘优化
时间序列数据挖掘是数据分析中重要的分支之一,专注于从序列数据中提取信息和模式。在这个过程中,相似性度量是核心任务之一。欧几里得距离作为基本的相似性度量方法之一,具有线性时间复杂度,但对异常点敏感,且要求比较的序列长度相等。动态时间规整(DTW)作为另一种有效方法,能够测量不同长度时间序列之间的相似性,通过弯曲操作处理等长时间序列,使其匹配到相似趋势上。文章《在线和动态时间规整,用于时间序列数据挖掘》提出了一种加速DTW计算的方法,通过滑动窗口将长序列分割为短子序列,并提出了有效的DTW算法来测量子序列间的相似性。数值实验表明,该方法比传统DTW方法更快、更有效。文章还结合在线学习,将DTW应用
数据挖掘
9
2024-08-31
MATLAB开发时间序列窗口交叉相似度的窗口交叉阈值计算
介绍了在MATLAB开发环境中,如何计算函数在所选窗口跨度下时间序列之间的窗口交叉相似度阈值。它涵盖了原始分辨率记录和聚合后的高时间分辨率记录之间的相关性。
Matlab
12
2024-08-13
matlab绘图教程图形窗口子图的创建方法
subplot函数的调用格式为:subplot(m,n,p),它能将当前图形窗口分成m×n个绘图区,按行优先编号。每个区域可以独立使用不同的坐标系绘制图形。例如,在图形窗口中,可以同时绘制多条曲线。
Matlab
10
2024-08-10
多变量时间序列的维度简化_模式匹配与异常检测
多变量时间序列的维度简化模式匹配异常检测是多变量时间序列分析中重要的技术手段。
算法与数据结构
4
2024-09-20
修改序列
ALTER SEQUENCE 语句可修改序列的增量值、最大值、最小值、循环选项和缓存选项。如果序列达到 MAXVALUE 限制,修改序列继续使用。
Oracle
10
2024-05-25
谷歌序列到序列教程Matlab代码实现
Thang Luong、Eugene Brevdo和赵瑞编写的神经机器翻译(seq2seq)教程,这是谷歌项目的一个分支。本教程帮助使用稳定TensorFlow版本的研究者快速上手。它详细介绍了如何构建竞争力强的seq2seq模型,特别适用于神经机器翻译任务。教程提供了最新的解码器/注意包装器,结合了TensorFlow 1.2数据迭代器和专业的递归模型知识,为构建最佳NMT模型提供了实用的提示和技巧。完整的实验结果和预训练模型在公开可用的数据集上进行验证。
Matlab
9
2024-07-14
探寻序列数据中的规律:序列模式挖掘算法解析
序列模式挖掘:在包含多个有序序列的数据集中,每个序列由按特定顺序排列的不同元素构成,每个元素又包含不同的项目。通过设置最小支持度阈值,算法识别频繁出现的子序列,即满足出现频率高于阈值的子序列模式。
算法与数据结构
13
2024-04-29
Oracle 创建序列
在 Oracle 表中创建序列以生成唯一 ID 或其他值。
Oracle
13
2024-05-15
Oracle 序列简介
Oracle 序列用于生成唯一且有序的数字序列。它常用于主键和时间戳等需要递增数字字段的场景。
Oracle
11
2024-04-29