有限状态机、遗传算法、神经网络等人工智能算法演示程序及源代码。
人工智能算法演示
相关推荐
KDD:人工智能研究热点
KDD 已成为人工智能领域的研究热点,广泛应用于过程控制、信息管理、商业、医疗和金融等领域。作为大规模数据库中先进的数据分析工具,KDD 研究是数据库和人工智能领域的研究重点。
数据挖掘
2
2024-05-25
计算智能人工智能分支深度剖析
计算智能是人工智能的一个分支,涉及神经网络、模糊逻辑、进化计算和人工生命等领域。其研究和发展反映了现代科学技术多学科交叉与集成的重要趋势。计算智能系统具有计算适应性、容错性和接近人类速度与误差率的特点。神经计算则涵盖了人工神经网络的设计、训练和应用,具有并行处理、非线性映射和通过训练进行学习等特性。计算智能与人工智能的关系紧密但又有所区别,前者依赖于数值数据而不是知识精品。其应用广泛,包括模糊逻辑、进化计算、人工生命、机器人控制、自动控制、图像识别和自然语言处理等领域。
算法与数据结构
3
2024-07-31
马桥人工智能试验基地落地
上海马桥人工智能创新试验区聚集了超过2000家企业,其中包括世界500强、独角兽企业和国家企业技术中心。试验区以人工智能产业为驱动,促进区域发展。其规划包括商业办公区、智创研发区、智能制造区、未来居住区和蓝绿休闲空间。此外,试验区还举办了应用场景创新创业大赛,吸引全球人工智能人才参与试验区建设。
数据挖掘
9
2024-05-01
人工智能导论知识发现方法概述
统计方法:基于数据的数量特征,推断规律。
粗糙集:一种模糊集,用于规则归纳、分类和聚类。
可视化:将数据转化为图形,便于理解。
传统机器学习:包括符号学习和连接学习。
知识发现与数据挖掘。
数据挖掘
1
2024-05-25
人工智能MATLAB MNIST代码实现详解
这是《DAve-QN:具有局部超线性收敛速率的分布式平均拟牛顿方法》论文的实现,该方法已在第23届国际人工智能与统计国际会议上接受。我们提供了基于C的高性能实现,并编写了所有必要的脚本,以便与最新技术进行比较。此外,我们还为DAve-QN提供了MATLAB实现,方便进一步研究使用。设置环境变量MKLROOT至关重要,以便在不同系统上正确运行。编译代码的方法已在makefile中提供。测试DAve-QN时,我们使用多个输入参数进行了充分的测试,确保其在mnist数据集上的稳定性和性能。
Matlab
2
2024-07-14
利用人工智能提供设备即服务
随着技术的进步,利用人工智能提供设备即服务已经成为现实。这一技术革新不仅提高了服务的效率,还优化了用户体验。
spark
2
2024-07-13
深入人工智能项目实战与应用探索
2019年秋季课程介绍了基于知识搜索技术、自动推理、谓词逻辑知识表示、机器学习以及概率推理的原理,并探讨了它们在问题解决、数据挖掘、游戏、自然语言理解、计算机视觉、语音识别和机器人技术中的应用。
数据挖掘
3
2024-07-18
通过使用人工智能的教育创新
技术进步引领下,人工智能正逐步成为教育界的关键参与者。
Oracle
2
2024-07-20
基于数据集的人工智能象棋应用
仅涵盖部分数据,如需更多数据,请自行获取。
MySQL
0
2024-08-22