- 统计方法:基于数据的数量特征,推断规律。
- 粗糙集:一种模糊集,用于规则归纳、分类和聚类。
- 可视化:将数据转化为图形,便于理解。
- 传统机器学习:包括符号学习和连接学习。
- 知识发现与数据挖掘。
人工智能导论知识发现方法概述
相关推荐
KDD:人工智能研究热点
KDD 已成为人工智能领域的研究热点,广泛应用于过程控制、信息管理、商业、医疗和金融等领域。作为大规模数据库中先进的数据分析工具,KDD 研究是数据库和人工智能领域的研究重点。
数据挖掘
2
2024-05-25
人工智能算法演示
有限状态机、遗传算法、神经网络等人工智能算法演示程序及源代码。
算法与数据结构
4
2024-05-26
人工智能现代方法第三版
这本书涵盖了机器学习、自然语言处理、数据挖掘和信息检索等智能领域的重要知识,是学习这些领域的重要参考书籍。
数据挖掘
0
2024-09-13
计算智能人工智能分支深度剖析
计算智能是人工智能的一个分支,涉及神经网络、模糊逻辑、进化计算和人工生命等领域。其研究和发展反映了现代科学技术多学科交叉与集成的重要趋势。计算智能系统具有计算适应性、容错性和接近人类速度与误差率的特点。神经计算则涵盖了人工神经网络的设计、训练和应用,具有并行处理、非线性映射和通过训练进行学习等特性。计算智能与人工智能的关系紧密但又有所区别,前者依赖于数值数据而不是知识精品。其应用广泛,包括模糊逻辑、进化计算、人工生命、机器人控制、自动控制、图像识别和自然语言处理等领域。
算法与数据结构
3
2024-07-31
基于遗传算法的图像阈值分割MATLAB代码——《人工智能导论》作业
这是我在杭州电子科技大学计算机学院《人工智能导论》课程的大作业题目,原题为《基于遗传算法的图像阈值分割》。尽管源工程文件已遗失,但幸运的是,我已将所有代码和详细思路复制并排版在Word文档中。您可以直接复制这些MATLAB代码到您的开发环境中进行验证。
Matlab
0
2024-09-27
人工智能领域中的知识表达方式探索与应用
在人工智能领域,知识的表达方法是解决问题的核心之一。本章详细探讨了多种不同的知识表达技术,帮助AI系统理解和处理复杂的问题。其中介绍了状态空间法,这是一种广泛应用于问题求解的技术,通过描述问题的状态和操作符来构建问题的状态空间。状态空间法的应用举例包括解决迷宫问题或下棋问题,每个状态代表不同的问题阶段,操作符描述了状态之间的转换。另外,讨论了问题归约法,通过逐步分解为一系列子问题来解决复杂问题,如梵塔难题。本章还提及了谓词逻辑法、语义网络法等其他重要的知识表示方法,这些方法在AI系统中起到关键作用,选择合适的表达方式取决于问题的性质和解决策略。
算法与数据结构
0
2024-10-10
马桥人工智能试验基地落地
上海马桥人工智能创新试验区聚集了超过2000家企业,其中包括世界500强、独角兽企业和国家企业技术中心。试验区以人工智能产业为驱动,促进区域发展。其规划包括商业办公区、智创研发区、智能制造区、未来居住区和蓝绿休闲空间。此外,试验区还举办了应用场景创新创业大赛,吸引全球人工智能人才参与试验区建设。
数据挖掘
9
2024-05-01
人工智能MATLAB MNIST代码实现详解
这是《DAve-QN:具有局部超线性收敛速率的分布式平均拟牛顿方法》论文的实现,该方法已在第23届国际人工智能与统计国际会议上接受。我们提供了基于C的高性能实现,并编写了所有必要的脚本,以便与最新技术进行比较。此外,我们还为DAve-QN提供了MATLAB实现,方便进一步研究使用。设置环境变量MKLROOT至关重要,以便在不同系统上正确运行。编译代码的方法已在makefile中提供。测试DAve-QN时,我们使用多个输入参数进行了充分的测试,确保其在mnist数据集上的稳定性和性能。
Matlab
2
2024-07-14
使用NEO4J构建《人工智能引论》课程的多模态知识图谱方法
知识图谱是一种结构化的语义知识库,用于通过图形形式表现物理世界的概念及其关系。知识图谱的核心是“实体-关系-实体”三元组,其中实体是独立的事物,关系连接不同实体,属性描述实体的具体值。这些基本单位构成了知识图谱的底层数据结构。图数据库作为一种新型的非关系型数据库,其核心元素与图论相通,包括节点和边,用于连接实体与事件,构成知识结构网络。通过图数据库模型,知识图谱可以将节点(如人、书籍)和关系(如作者、引用)以图的方式呈现,便于复杂知识的存储与检索。
NEO4J构建流程:
定义实体与关系:确定AI课程中的主要知识点并表示为实体。
创建节点和关系:利用Neo4j平台,将每个知识点定义为节点,通过关系链接相关知识点。
添加属性:为节点和关系定义属性,如定义‘算法’节点的‘名称’和‘难度’属性,以补充实体的具体信息。
优化与查询:利用Cypher查询语言测试知识图谱,确保关系的完整性与信息的易获取性。此过程确保了知识图谱的准确性与易操作性,为课程内容提供了一个视觉化的知识结构支持。
最终,该知识图谱有效整合了《人工智能引论》课程的多维知识点,形成结构化、可视化的知识图谱,为学习和数据查询提供了有力支持。
NoSQL
0
2024-10-25