该方法结合实例学习和灰色理论技术,对缺失数据重复填补,直至结果满足要求。实验表明,其填补效果和效率优于KNN和均值替代法。
基于灰色关联分析的缺失值重复填补方法
相关推荐
灰色关联分析MATLAB程序
灰色关联分析MATLAB代码的计算方法参考文献包括王宁练的研究,探讨了冰川平衡线变化的主导气候因子。
Matlab
0
2024-09-25
Matlab编程缺失数据的一维插值方法
Matlab编程:在缺失数据上进行一维插值。
Matlab
0
2024-08-26
候选序列生成:基于关联分析的数据挖掘方法
在数据挖掘领域,关联分析是一种重要技术,而候选序列生成是关联分析中的关键步骤。
为了有效地生成候选序列,一种常见的方法是合并频繁的较短序列。具体来说,通过合并两个频繁的 (k-1)-序列,可以产生候选的 k-序列。
为了避免重复生成候选序列,可以采用类似于 Apriori 算法的策略。例如,只有当两个 (k-1)-序列的前 k-2 项相同时,才进行合并操作。
以下示例演示了如何通过合并频繁 3-序列来生成候选 4-序列:
合并 <{1 2 3}> 和 <{2 3 4}>,得到 <{1 2 3 4}>。
由于事件 3 和事件 4 属于第二个序列的不同元素,因此它们在合并后的序列中也属于不同的元素。
合并 <{1 3 4}> 和 <{3 4 4}>,得到 <{1 3 4 4}>。
由于事件 3 和事件 4 属于第二个序列的相同元素,因此将事件 4 合并到第一个序列的最后一个元素中。
算法与数据结构
3
2024-05-23
SPSS统计分析教程设置值和缺失值清点对象
Value: 输入某个值作为清点对象。
System-missing: 以系统的缺失值作为清点对象。
System-or user missing: 以系统或用户指定的缺失值为清点对象。
Range: 指定数值的计数区域,其中包括:
( )through( ): 在框内指定下限和上限。
lowest through( ): 在框内只指定上限。
( )highest through: 在框内只指定下限。
统计分析
0
2024-10-28
Matlab灰色关联度算法源码下载
灰色关联度算法的基础代码可以在这里下载,适用于Matlab环境。灰色关联度分析是一种用于数据关联度分析的方法,通过模糊化处理实现数据之间的关联度量化。这份源码提供了实现灰色关联度分析的基本功能,适合需要进行数据关联分析的科研工作者和学生使用。
Matlab
0
2024-08-22
数据分析算法关联分析的转化方法
将事务处理过程转化为图形模型是数据分析算法中关联分析的重要步骤。
算法与数据结构
0
2024-08-15
灰色预测方法的Matlab代码
灰色预测方法的Matlab代码,用于预测未来趋势的数据,下载后替换成自己的数据即可使用。
Matlab
0
2024-08-27
数据缺失值替换参数设置
数据缺失值替换参数设置:可以选择删除缺失值或用特定值替换。
算法与数据结构
4
2024-05-15
数据挖掘:缺失值归因或填充
当缺失值数量较少时,可以使用插入值替换空值。方法包括:1. 固定值(字段平均值、范围中间值或常数)2. 基于正态或均匀分布的随机值3. 自定义表达式(如全局变量)4. C&RT模型预测值(使用单独模型,用预测值替换空白和空值)
数据挖掘
3
2024-05-25