永远在线时代:隐私衡量与保护

数据挖掘在互联时代得到了极大的加强,从互联网到物联网 (IoT),用户通过电视、智能手机、可穿戴设备和计算机化的个人助理等各种方式连接到互联网。许多设备以“永远在线”模式运行,不断接收和传输数据,物联网设备的增加使用可能导致社会进入“永远在线”时代,个人数据不断被收集。

当前的隐私监管方法本质上是部门性的,仅在特定背景下保护隐私,并且仅针对特定的行业或群体,因此个人隐私面临巨大风险。然而,严格的隐私监管可能会对数据效用产生负面影响,尤其是在技术发展和创新方面。

数据效用和隐私保护之间的权衡需要新的解决方案,而差异隐私方法可能会有很大帮助。该方法建议在被视为敏感的数据中添加“噪声”,具体取决于数据敏感的可能性。换句话说,使用计算解决方案结合衡量数据敏感概率的公式,隐私可以在“永远在线”时代得到更好的保护。

物联网服务提供商可以结合法律和计算方法来优化数据效用和隐私之间的平衡。部门方法下的隐私保护及其价值需要被评估。技术变革如何塑造行业监管,物联网设备如何影响隐私,以及新监管机制应对“永远在线”时代挑战的潜在适用性都需要被探讨。

针对当前监管框架在保护个人隐私方面的局限性,技术可以作为一种解决方案。依赖于差异隐私的新计算模型和私有核心集等现代技术可以被使用。在用户端的数据中引入“噪声”可以保护个人隐私,同时使服务提供商能够利用数据。

核心内容

  • 探讨“永远在线”时代数据挖掘带来的隐私挑战。
  • 分析现有部门性隐私监管方法的不足。
  • 提出基于差异隐私和“噪声”添加的技术解决方案。
  • 探讨法律和计算方法结合,平衡数据效用和隐私保护。