复化辛普森公式是数值积分方法中的一种重要方法,它基于将积分区间细分为多个子区间,并在每个子区间上应用辛普森公式来近似积分。
辛普森公式利用二次多项式来逼近被积函数,并在每个子区间上使用三个节点进行插值。通过将所有子区间上的积分结果求和,复化辛普森公式可以获得更精确的积分近似值。
与其他数值积分方法相比,复化辛普森公式具有更高的精度和收敛速度。
复化辛普森公式是数值积分方法中的一种重要方法,它基于将积分区间细分为多个子区间,并在每个子区间上应用辛普森公式来近似积分。
辛普森公式利用二次多项式来逼近被积函数,并在每个子区间上使用三个节点进行插值。通过将所有子区间上的积分结果求和,复化辛普森公式可以获得更精确的积分近似值。
与其他数值积分方法相比,复化辛普森公式具有更高的精度和收敛速度。