雷达目标检测

当前话题为您枚举了最新的雷达目标检测。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

MATLAB雷达目标生成与检测的运动目标识别代码
在这个课程中,我们详细讨论了雷达在自动驾驶汽车感知中的关键角色。我们从基本原理出发,介绍了信号传播和目标响应生成的过程。进一步深入研究了实时定位目标所需的Range Doppler生成。使用MATLAB编写了生成目标场景的代码,包括FMCW波形的创建,以及使用FFT和CFAR处理技术生成距离多普勒地图(RDM)。在项目的第二部分,我们利用MATLAB的Driving Scenario Simulator进行部署,实现了多对象的跟踪和聚类分析。完成此项目需要下载并安装MATLAB,并确保环境准备就绪。详细操作步骤包括创建MathWorks帐户、下载安装程序并完成安装。
雷达目标生成与检测基于FMCW波形的系统配置
讨论了如何根据系统要求配置FMCW波形,定义雷达目标的范围和速度,并模拟其位移。在仿真循环中,通过计算发送和接收信号以检测 beat 信号,并对接收信号进行范围FFT处理,确定目标位置。进一步,利用CFAR处理第二个FFT输出,有效显示目标。
雷达多反射点目标跟踪技术
《跟踪雷达目标与多反射点》是Texas Instruments公司发布的一份技术文档,详细介绍了针对具有多个反射点的雷达目标的跟踪算法。文档通过多次修订,提供了算法的详细解释和配置参数的更新,适用于毫米波雷达系统。将深入探讨其核心知识点。
深度学习目标检测方法解析
这份文件深入探讨了利用深度学习进行目标检测的各种方法。它对不同的方法进行了分类和解析,并对它们的优缺点进行了比较。
Matlab DQN图像目标检测项目
用神经网络做权重优化的目标检测项目,融合了CNN、DQN和SVM这三块内容。说白了,就是用强化学习来教一个智能体去找图像里的目标,还挺有意思的。训练是在 Google Cloud GPU 上跑的,效果还不错,跑完能自动框出目标位置。 特征提取靠的是预训练的 CNN,像是先把图像切出几个区域,提取每一块的特征。用Deep Q Network,一步步调整边框的位置,目标就是尽少地移动几次就把对象框出来。再用一个SVM 分类器确认框出来的东西是不是目标类别。 项目结构也清晰,Matlab代码整理得还行,比较适合用来做强化学习和图像的结合实验。适合已经有点深度学习基础、又想试试强化学习落地的同学。 代
matlab编程实现车辆目标检测源码
使用Matlab编程实现车辆目标的检测,代码详细易懂,适合初学者学习使用。
基于Matlab的视频运动目标检测
该程序使用Matlab读取视频文件中的图像帧,并对每帧图像进行运动目标检测,实现对视频中运动目标的持续追踪。
基于MATLAB的MIMO雷达信号检测问题研究
本研究探讨了MIMO雷达信号检测中的若干关键问题,并提供了基于MATLAB的实现方案,用于分析和验证提出的解决方法。
合成孔径雷达分布目标回波数据高效模拟
为降低合成孔径雷达 (SAR) 分布目标原始回波数据模拟的计算复杂度,提出了一种基于距离时域脉冲相干的优化算法。通过对回波数据的统计分析和成像处理,验证了该算法的有效性。
多高斯模型运动目标检测算法
多高斯模型是一种背景消减的运动目标检测方法,该算法具有新颖性和易实现性,采用Matlab编写。