样本均值

当前话题为您枚举了最新的 样本均值。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

MATLAB中的置换测试用于检测样本均值差异的随机测试
MATLAB中的置换测试(也称为随机测试)用于评估两个样本之间的均值差异。此测试支持单尾和双尾检验,提供p值、观察到的差异和效应大小(Hedges g)。用户可以选择使用直方图可视化结果,并进行精确测试,考虑所有可能的排列。
方差定义(样本)
方差S²(样本)的定义为:
样本代码介绍
SurveyData.csv 中含有有关华盛顿特区国家广场的纪念碑和博物馆的独特数据,而 Bingaman_Example_Code.Rmd 则演示了如何使用这些数据进行统计分析。
多重均值比较
对四种颜色下的总体的均值进行多重比较,以确定它们之间是否存在显著差异。
均值偏移相关资料
基于均值偏移算法的MATLAB聚类程序 均值偏移基本原理、算法和应用 均值偏移图像分割程序 均值偏移目标跟踪MATLAB程序 基于均值偏移的图像分割MATLAB程序 均值偏移算法源代码和演示图片 均值偏移目标跟踪程序 小波变换MATLAB程序 均值偏移算法聚类程序 均值偏移算法详解和MATLAB源码 均值偏移算法跟踪代码及卡尔曼滤波处理 均值偏移算法聚类程序 均值偏移跟踪算法及C++源码 均值偏移跟踪算法MATLAB实现 均值偏移图像分割MATLAB源码 均值偏移卡尔曼目标跟踪编译程序 均值偏移图像平滑MATLAB实现 均值偏移目标跟踪MATLAB实现 均值偏移跟踪算法C++源代码 基于均值偏移算法的目标检测程序 均值偏移原理及图像分割应用MATLAB程序 基于卡尔曼滤波的均值偏移算法 基于均值偏移算法的图像分割MATLAB代码 均值偏移追踪程序 基于均值偏移算法的图像分割程序
matlab开发-生成样本音频
matlab开发-生成样本音频。利用随机组合一系列已知的测试数据来生成测试样本。
顺序k均值算法实现
本项目通过分析不同背景舞者的动作模式,探寻舞蹈中肢体的语言,揭示舞者的动作特征。 该项目采用聚类技术(主要是k均值)分析动作模式,并使用k均值的变体——顺序k均值算法进行在线聚类,集成到实时交互式舞蹈表演组件中。 计算系统根据舞者的训练识别模式,形成反馈循环,促进舞者与机器的交流。该系统使用定制数据库,突出不同运动形式的差异,并重视运动选择过程。
K均值聚类算法
这份文档包含了用于图像分割的K均值聚类算法的Matlab程序代码。
列值分区样本数据
列值分区样本数据用于对大数据集进行优化,以提高查询性能。
Matlab实现K均值与模糊C均值聚类及其可视化
使用Matlab对随机生成的数据进行聚类分析,分别采用K均值聚类和模糊C均值聚类方法。 K均值聚类:* 距离计算方法:默认采用欧式距离(sqeuclidean),可选用曼哈顿距离(cityblock)、余弦距离(cosine)、相关系数距离(correlation)以及汉明距离(hamming,仅适用于二分类变量)。* 可选参数:'Streams'和'UseSubstreams',用于设置数据流,需重新设置数据。* 输出结果:* 各变量的簇心位置;* 簇内点到质心距离之和;* 各点在不同距离计算方法下到质心的距离;* 基于不同距离计算方法的聚类结果;* silhouette系数用于评估聚类合理性。 模糊C均值聚类:* 输出结果:* 聚类结果;* 各变量的簇心位置。 结果可视化:* 聚类图* 识别图* 三维分布图* 树状图* 平铺图