流和时间序列挖掘
当前话题为您枚举了最新的 流和时间序列挖掘。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
在线时间序列数据挖掘优化
时间序列数据挖掘是数据分析中重要的分支之一,专注于从序列数据中提取信息和模式。在这个过程中,相似性度量是核心任务之一。欧几里得距离作为基本的相似性度量方法之一,具有线性时间复杂度,但对异常点敏感,且要求比较的序列长度相等。动态时间规整(DTW)作为另一种有效方法,能够测量不同长度时间序列之间的相似性,通过弯曲操作处理等长时间序列,使其匹配到相似趋势上。文章《在线和动态时间规整,用于时间序列数据挖掘》提出了一种加速DTW计算的方法,通过滑动窗口将长序列分割为短子序列,并提出了有效的DTW算法来测量子序列间的相似性。数值实验表明,该方法比传统DTW方法更快、更有效。文章还结合在线学习,将DTW应用于实时数据流中,显著提高了算法在时间序列数据挖掘中的性能。
数据挖掘
0
2024-08-31
时间序列分析和数据挖掘资源精选
时间序列分析和数据挖掘资源精选
学习资源
课程
实用时间序列分析 | Coursera
时间序列分析 | 麻省理工学院 - 开放式课件
时间序列分析 | edX
时间序列预测 | Udacity
使用中断时间序列的策略分析 | 英特尔® 开发人员专区
版课程资源
多元时间序列分析 | 芝加哥展台,Ruey S. Tsay
时间序列 | 俄勒冈州立大学
统计预测:有关回归和时间序列分析的注释 | 杜克大学
书籍
Cochrane J H. 宏观经济学和金融学的时间序列 [J]. 计算机应用,2006,26(6):1175-1178
芝加哥大学手稿,2005年。预测:原则与实践。 Rob J Hyndman和George Athanasopoulos
论文
时间序列数据挖掘
时间序列数据的聚类—调查
工具
pyts
数据挖掘
2
2024-05-20
深入了解时间序列分析与数据挖掘
可以很好的理解时间序列分析和数据挖掘的概念及其在实际中的应用,对我们具有重要意义。
数据挖掘
3
2024-07-16
STUMPY: 用于时间序列数据挖掘的强大Python库
STUMPY 是一个功能强大且可扩展的 Python 库,可以高效地计算矩阵配置文件。矩阵配置文件可用于各种时间序列数据挖掘任务,例如:
模式/基序(较长时间序列内的近似重复子序列)发现
异常/新奇(不一致)发现
Shapelet 发现
语义分割
密度估计
时间序列链(子序列的临时排序集合)模式
以及更多...
无论您是学者、数据科学家,STUMPY 都能帮助您深入了解时间序列数据。
数据挖掘
4
2024-05-15
多变量时间序列的模糊决策树挖掘研究
针对当前时间序列决策研究方法存在的问题,提出了多变量时间序列模糊决策树挖掘方法,并通过实验分析验证了该方法能够有效捕捉多变量时间序列子序列的形态及后期趋势或状态的决策信息。
数据挖掘
2
2024-07-17
Python-STUMPY时间序列数据挖掘的高效Python库
Python-STUMPY是一个专为时间序列数据挖掘设计的高效、灵活的开源库,在Python开发社区中被广泛应用于数据分析任务。时间序列分析是研究数据随时间变化趋势的关键方法,适用于金融、医疗、物联网(IoT)、工业4.0等众多领域。STUMPY的核心功能在于发现时间序列中的模式,有助于用户识别潜在的结构、异常和周期性。该库采用矩形最大值乘积(Matrix Profile)方法作为核心算法,这种方法在统计学上非常有效,可以高效处理大规模数据集,并保持较低的内存需求。使用STUMPY进行时间序列挖掘时,常见步骤包括数据预处理、计算Matrix Profile、模式发现、模式解释以及应用与扩展。在\"TDAmeritrade-stumpy-f5625e9\"这个压缩包中,可能包含了STUMPY库的一个特定版本或与TDAmeritrade相关的示例代码。
数据挖掘
0
2024-08-28
R语言时间序列分析
利用全国卷烟销量数据,采用R语言进行时间序列分析。分别构建ARIMA季节时间序列模型、Holtwinters指数平滑模型,并评估模型准确性。提供完整R代码和数据集。
算法与数据结构
4
2024-05-13
resampleX - 重采样时间序列
resampleX 可重采样时间序列数据,以更改其采样率。它通过使用指定的重采样间隔 alpha 来执行此操作。例如,要将每秒采样 1000 次的数据转换为每秒 1100 次,请使用 alpha = 1000/1100。resampleX 与 MATLAB 的“resample”函数类似,但速度通常更快。
Matlab
2
2024-05-20
时间序列分析预测法
时间序列分析预测法分为三类:
平滑预测法:采用移动平均和指数平滑方法,平滑原始数据趋势线。
趋势外推预测法:利用历史数据拟合趋势函数,预测未来趋势。
平稳时间序列预测法:估计模型参数,根据历史数据预测未来值。
算法与数据结构
4
2024-05-24
Matlab时间序列分析代码
时间序列数据分析的Matlab实现代码。
Matlab
1
2024-07-27