时间序列分析资源包
本资源包包含教学PPT和MATLAB实现代码,详细介绍了时间序列的基本理论。时间序列是按时间顺序排列的统计指标数列,主要用于基于历史数据预测未来走势。经济数据通常以时间序列形式呈现,时间单位可以是年、季度、月等。
Matlab
13
2024-09-28
深入了解时间序列分析与数据挖掘
可以很好的理解时间序列分析和数据挖掘的概念及其在实际中的应用,对我们具有重要意义。
数据挖掘
19
2024-07-16
在线时间序列数据挖掘优化
时间序列数据挖掘是数据分析中重要的分支之一,专注于从序列数据中提取信息和模式。在这个过程中,相似性度量是核心任务之一。欧几里得距离作为基本的相似性度量方法之一,具有线性时间复杂度,但对异常点敏感,且要求比较的序列长度相等。动态时间规整(DTW)作为另一种有效方法,能够测量不同长度时间序列之间的相似性,通过弯曲操作处理等长时间序列,使其匹配到相似趋势上。文章《在线和动态时间规整,用于时间序列数据挖掘》提出了一种加速DTW计算的方法,通过滑动窗口将长序列分割为短子序列,并提出了有效的DTW算法来测量子序列间的相似性。数值实验表明,该方法比传统DTW方法更快、更有效。文章还结合在线学习,将DTW应用
数据挖掘
11
2024-08-31
精选数据挖掘特征
数据挖掘是大数据入门必读的内容,特别是在特征选择和降维方法方面有着深入讨论。
数据挖掘
13
2024-07-22
SAS时间序列分析
SAS 的时间序列,属于那种你用过一次就觉得“哦,原来可以这么干”的工具。它其实不难理解,就是把一堆按时间排的数拿来,去预测下一步要干嘛。挺适合做销量预测、网站访问量这类事儿。基本原理也不复杂。SAS 的套路是:先看趋势,再看波动,再加点统计方法,比如加权平均。简单来说,就是过去数据给多点权重,新数据靠后点,但整体来说,模型还蛮好调的。你可以试试XGBoost和LSTM来做时间序列预测,前者更偏向结构化数据,后者适合更复杂的时间依赖。比如你想预测明天的电量需求,用 LSTM 就挺合适。还有一些不错的参考资料我也整理出来了,像ForecastXGB的结合方式,还有用MATLAB实现的 CNN-B
统计分析
0
2025-06-25
数据分析和数据挖掘书籍推荐
这些英文书籍是数据分析和数据挖掘领域的入门好帮手,可以帮助您快速了解相关概念。
算法与数据结构
18
2024-04-30
STUMPY: 用于时间序列数据挖掘的强大Python库
STUMPY 是一个功能强大且可扩展的 Python 库,可以高效地计算矩阵配置文件。矩阵配置文件可用于各种时间序列数据挖掘任务,例如:
模式/基序(较长时间序列内的近似重复子序列)发现
异常/新奇(不一致)发现
Shapelet 发现
语义分割
密度估计
时间序列链(子序列的临时排序集合)模式
以及更多...
无论您是学者、数据科学家,STUMPY 都能帮助您深入了解时间序列数据。
数据挖掘
14
2024-05-15
基于小波分析的时间序列数据挖掘2008年ARMA模型结合
如果你在做时间序列,尤其是想挖掘数据中的隐周期和非线性模式,可以试试这篇基于小波的时间序列数据挖掘方法。小波和 ARMA 模型结合,用来滤波并提取数据的各种特征。它的优势在于能将小波分解序列的特性应用到神经网络和自回归模型中,从而提高预测准确性。通过重构技术,它把不同尺度的预报结果结合,得到最终的时间序列预测。实验验证了方法的有效性。嗯,如果你正在做类似的预测工作,可以参考一下这篇文章的实现。
数据挖掘
0
2025-06-17
基于OLAP和数据挖掘的Web日志分析
这份PDF文档探讨了OLAP(在线分析处理)和数据挖掘技术在Web日志分析中的应用。
数据挖掘
17
2024-05-15