这份PDF文档探讨了OLAP(在线分析处理)和数据挖掘技术在Web日志分析中的应用。
基于OLAP和数据挖掘的Web日志分析
相关推荐
数据仓库、OLAP和数据挖掘技术指南
本课件全面涵盖数据仓库、OLAP技术和数据挖掘技术及其应用工具。共包含499页内容,提供了详尽的介绍、案例研究和实用指导。
数据挖掘
3
2024-05-13
如何利用数据挖掘技术分析Web网站日志?
Web日志挖掘是指利用数据挖掘技术分析Web服务器记录的用户访问日志数据,以揭示用户访问模式和兴趣爱好等信息。这些信息对于优化网站设计、改进用户体验和个性化推荐至关重要。通过用户聚类和分析频繁访问路径,可以调整页面链接关系,以更好地满足用户需求。同时,统计分析日志数据还能帮助评估站点性能,识别热门页面和访问趋势,为站点管理和决策提供支持。
数据挖掘
3
2024-07-17
Web日志挖掘中的数据预处理优化
针对框架式页面进行了改进,添加页面过滤模块,并优化了页面过滤算法和用户识别策略,提升数据预处理的效率和准确性。
数据挖掘
4
2024-05-01
基于Oracle的OLAP分析详解
在网上关于OLAP的资料中,基于Oracle的内容相对较少。深入使用Oracle10g,详细解析了OLAP分析的过程和应用。
Oracle
0
2024-09-28
基于日志文件的数据挖掘技术分析与研究
数据挖掘的定义及其在分析日志数据挑战中的应用原因被介绍。讨论了企事业单位计算机信息系统安全的加强对日志数据挖掘的需求,并总结了具体应用。
数据挖掘
2
2024-07-17
Web日志数据分析技术及其应用
Web日志数据分析技术及其应用,喜欢数据挖掘的可以下载查阅。
数据挖掘
0
2024-08-27
数据分析和数据挖掘书籍推荐
这些英文书籍是数据分析和数据挖掘领域的入门好帮手,可以帮助您快速了解相关概念。
算法与数据结构
4
2024-04-30
基于Hadoop的煤炭销售OLAP分析系统
针对煤炭销售数据体量庞大但信息密度低下的问题,基于Hadoop平台构建了一套OLAP煤炭销售数据分析系统。该系统利用Hadoop云平台对数据进行ETL处理,构建Hive分布式数据仓库,并采用Hive的HQL语言进行OLAP统计分析。以销售量统计为例,实现了对销售量信息多层次、多角度、深层次的数据挖掘、统计和分析,并以直观的多角度形式展示数据分析结果,从而实现对煤炭销售数据的快速、准确分析。
数据挖掘
2
2024-05-12
web数据挖掘实验结果分析
当前的聚类算法在调整“seed”参数后,观察到Within cluster sum of squared errors(SSE)达到了最小值1604.7416693522332。每个簇的中心位置通过“Cluster centroids:”列出,展示了数值型属性如age的均值37.1299,以及分类型属性如children的众数为3,指示出最常见的属性取值。为了进一步探索聚类结果,可视化工具提供了散点图,可以根据实例的不同簇分配进行着色。
数据挖掘
2
2024-07-13