Mathematical Computing
当前话题为您枚举了最新的 Mathematical Computing。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
Mathematical Modeling of Grey Prediction Analysis
数学建模中的灰色预测模型分析涉及对系统信息的不完全性进行建模,提供对未来趋势的有效预测。该模型通过构建灰色系统,能够处理小样本和不确定性数据,从而为决策者提供科学依据。关键技术包括数据预处理、模型构建和误差分析。通过实例验证,该方法在多个领域展现出良好的应用前景。
Matlab
0
2024-11-03
Mathematical Signal Processing and MATLAB Implementation
《数学信号处理及其MATLAB实现》是一本适用于通信相关专业的本科生和研究生的教材,书中详细介绍了数学信号处理的基本概念和方法,最重要的是提供了大量实用的MATLAB源代码供参考,帮助学生理解和实现相关算法。
Matlab
0
2024-11-06
Matlab_Image_Processing_in_Mathematical_Modeling
关于数学建模方面的Matlab的图像处理,文件为PDF格式。
Matlab
0
2024-11-06
Check Results Deployment of Hadoop on Cloud Computing Platform
Check results
MongoDB
0
2024-10-31
Mathematical Constants Encyclopedia by Steven R. Finch
《数学常数》是由Steven R. Finch编撰的一部关于数学常数的百科全书,它在数学及其应用的文献中占据了重要地位。这本由剑桥大学出版社出版的百科全书详细探讨了各种数学常数,包括它们的定义、历史、计算方法以及在不同数学领域中的应用。书中首先介绍了著名的数学常数,如毕达哥拉斯常数(根号2),详细讨论了它的继续分数表示和非根式化的方法。接着,作者深入剖析了黄金比例(φ),分析了其根式展开、立方变化、继续分数表示、随机斐波那契序列以及斐波那契阶乘等相关主题。此外,书中还详细阐述了自然对数的底e,通过极限分析和继续分数展示了e的特性,并讨论了e的对数——自然对数ln(2)。重要内容之一是阿基米德常数π,列举了π的无穷级数和无穷乘积表示,这些是求π值的经典方法。书中还涵盖了其他数学常数,如圆周率的近似值、欧拉数、圆周率的幂级数展开、超越数的概念,以及不同常数之间的联系等。每种常数的讨论都伴随着丰富的历史背景和数学证明,为读者提供一个全面而深入的理解。书后附有参考文献和索引,方便读者查找和进一步研究。该书严格遵守版权规定,未经许可不得擅自复制。这部百科全书不仅适合数学研究人员,也对对数学感兴趣的广大读者提供了宝贵的资源,帮助他们探索数学世界的奥秘。
统计分析
0
2024-09-18
Switch Statement in MATLAB,LINGO,and Mathematical Modeling Competitions
Switch语句根据表达式的取值不同,分别执行不同的语句,其语句格式为:
switch 表达式case 表达式1 语句组1case 表达式2 语句组2……case 表达式m 语句组motherwise 语句组nend
Matlab
0
2024-11-04
MATLAB Development-Mandelbrot Set with Parallel Computing Toolbox
MATLAB development - Mandelbrot set with Parallel Computing Toolbox. This example demonstrates how to fully leverage the Mandelbrot set using parallel computing techniques in MATLAB to improve performance for large-scale computations. Parallel processing allows the algorithm to run faster by utilizing multiple cores to handle different parts of the set simultaneously, speeding up the visualization and exploration of fractals.
Matlab
0
2024-11-06
Quaternion and 3D Rotation Interpolation A Mathematical Insight
Quaternions are an extension of the complex number concept, playing a crucial role in 3D space rotation. To better understand the relationship between quaternions and 3D rotations, we begin with the fundamentals of complex numbers, as there are notable parallels between the properties of complex numbers and their role in 2D rotation.
Complex numbers consist of real and imaginary components, where the imaginary unit (i) is defined as ( \sqrt{-1} ), so any complex number (z) can be represented as ( z = a + bi ), with (a) as the real part and (b) as the imaginary part, where (i^2 = -1). Complex numbers can be viewed as points or vectors in the complex plane, where the real part corresponds to the x-axis and the imaginary part to the y-axis. Complex addition and subtraction are straightforward, performed by adding or subtracting the real and imaginary parts, respectively.
Multiplication of complex numbers, however, is slightly more complex, requiring expansion and simplification using (i^2 = -1). A significant feature of complex multiplication is its connection to matrix multiplication. Specifically, every complex number can be associated with a particular 2x2 real matrix. For example, the complex number ( z = a + bi ) can be represented by the matrix:
[ \begin{bmatrix} a & -b \\ b & a \end{bmatrix} ]
This matrix form allows us to use matrix multiplication to perform complex number multiplication. During this process, we observe that complex number multiplication effectively corresponds to a rotation and scaling transformation in 2D space. For instance, the unit complex number 1 corresponds to the identity matrix, leaving points in the complex plane unchanged, while the imaginary unit (i) corresponds to a 90-degree rotation matrix, meaning that multiplying a complex number by (i) rotates it 90 degrees clockwise.
After grasping these complex fundamentals, we move to quaternions. Quaternions are a further extension of complex numbers into four-dimensional space. Each quaternion consists of a real part and three imaginary parts, generally written as ( q = w + xi + yj + zk ), where (w) is the real part and (x), (y), and (z) are the imaginary parts. The units (i), (j), and (k) follow distinct multiplication rules in four-dimensional space, where quaternion multiplication is analogous to complex multiplication yet complies with four-dimensional rules.
Quaternions are highly beneficial in 3D rotation operations because they avoid gimbal lock, a common issue with Euler angle representation. This makes quaternions a stable and continuous method for rotation interpolation, essential in computer graphics for 3D animation and simulation. Through quaternions, we can use linear algebra and basic geometry principles to intuitively derive and comprehend 3D spatial rotation. Quaternions provide direct representation of the rotation axis and rotation angle, while interpolating quaternions enables smooth transitions between two rotations. This is extremely helpful in animation and real-time rendering for creating fluid movement. For example, in game development and flight simulation, quaternions are often used to achieve coherent flight paths, allowing engineers to implement smooth motion.
算法与数据结构
0
2024-10-25
Parallel_Computing_University_of_Science_and_Technology_China_Lecture_Slides
并行计算 (中科大讲义) 提供了一系列关于 并行计算 的关键概念、模型与实现策略。本讲义从并行计算的基本原理开始,深入探讨了如何利用 多核处理器 实现高效计算。包括数据并行、任务并行等模型,并展示了 并行算法 的设计原则与优化方法。此外,讲义中还详细阐述了常用的并行计算工具、编程模型(如 MPI、OpenMP)以及 性能评估 的方法,为学习者提供了全面的并行计算知识框架。
算法与数据结构
0
2024-10-30
Next-Gen Personalized Push System OnePush by George Chu at Cloud Computing Summit
在第五届中国云计算大会上,雅虎北京全球研发中心资深研发总监George Chu介绍了OnePush系统,这是雅虎在数据挖掘领域取得的最新成果。OnePush是一个下一代个性化智能推送系统,解决当前用户通知面临的一些普遍问题。
在了解OnePush之前,我们先来看看当前行业普遍存在的问题。在当今移动设备和应用普及的时代,用户通知系统常面临着消息丢失、垃圾消息过多、消息不及时送达、同一消息对同一用户多设备重复发送、与大量过时信息同步、以及其他有趣信息难以被发现等问题。这些问题严重影响了用户体验,使得用户难以及时获取真正需要的信息。
针对这些挑战,雅虎提出了OnePush的愿景,即在正确的时间和地点,为用户提供正确数量和种类的、与用户个人相关的通知。为了实现这一愿景,OnePush系统的设计目标包括提供一套统一的API,支持注册、订阅、通知和主题命名空间,实现发现、导航、管理和分析等功能。
此外,OnePush还致力于提供一个连贯的客户上手体验,让客户能够顺畅地使用OnePush服务。OnePush系统是基于雅虎北京全球研发中心的三个支柱构建的:云计算、移动平台与应用以及个性化与广告。这些支柱共同支撑起一个使命,即让世界日常习惯变得更加鼓舞人心和娱乐化。
通过为用户创造高度个性化的体验,雅虎使人们能够与对他们最重要的内容保持连接,实现跨设备和全球范围内的无缝体验。同时,这也为雅虎的广告商创造了价值,通过将他们与构建业务的受众连接起来。
在短短两天内,雅虎的页面浏览量超过了地球上的人口数量,这一数据凸显了雅虎在全球范围内的巨大影响力以及用户规模。OnePush作为雅虎的解决方案,支持应用内流媒体和应用外通知两种工作负载模式。这种设计使得OnePush能够有效地提升用户体验,同时为广告商提供更有针对性的推送,以吸引更多的受众。
总体来说,OnePush系统利用雅虎在全球数据处理方面的专长,以及其在开源分布式数据库Hadoop和云服务领域的深厚积累,为个性化智能推送系统设定了新的行业标准。其背后的技术和理念不仅促进了用户体验的提升,也为广告和营销行业的发"
数据挖掘
0
2024-11-07