《数学常数》是由Steven R. Finch编撰的一部关于数学常数的百科全书,它在数学及其应用的文献中占据了重要地位。这本由剑桥大学出版社出版的百科全书详细探讨了各种数学常数,包括它们的定义、历史、计算方法以及在不同数学领域中的应用。书中首先介绍了著名的数学常数,如毕达哥拉斯常数(根号2),详细讨论了它的继续分数表示和非根式化的方法。接着,作者深入剖析了黄金比例(φ),分析了其根式展开、立方变化、继续分数表示、随机斐波那契序列以及斐波那契阶乘等相关主题。此外,书中还详细阐述了自然对数的底e,通过极限分析和继续分数展示了e的特性,并讨论了e的对数——自然对数ln(2)。重要内容之一是阿基米德常数π,列举了π的无穷级数和无穷乘积表示,这些是求π值的经典方法。书中还涵盖了其他数学常数,如圆周率的近似值、欧拉数、圆周率的幂级数展开、超越数的概念,以及不同常数之间的联系等。每种常数的讨论都伴随着丰富的历史背景和数学证明,为读者提供一个全面而深入的理解。书后附有参考文献和索引,方便读者查找和进一步研究。该书严格遵守版权规定,未经许可不得擅自复制。这部百科全书不仅适合数学研究人员,也对对数学感兴趣的广大读者提供了宝贵的资源,帮助他们探索数学世界的奥秘。
Mathematical Constants Encyclopedia by Steven R. Finch
相关推荐
Mathematical Modeling of Grey Prediction Analysis
数学建模中的灰色预测模型分析涉及对系统信息的不完全性进行建模,提供对未来趋势的有效预测。该模型通过构建灰色系统,能够处理小样本和不确定性数据,从而为决策者提供科学依据。关键技术包括数据预处理、模型构建和误差分析。通过实例验证,该方法在多个领域展现出良好的应用前景。
Matlab
0
2024-11-03
Mathematical Signal Processing and MATLAB Implementation
《数学信号处理及其MATLAB实现》是一本适用于通信相关专业的本科生和研究生的教材,书中详细介绍了数学信号处理的基本概念和方法,最重要的是提供了大量实用的MATLAB源代码供参考,帮助学生理解和实现相关算法。
Matlab
0
2024-11-06
Matlab_Image_Processing_in_Mathematical_Modeling
关于数学建模方面的Matlab的图像处理,文件为PDF格式。
Matlab
0
2024-11-06
Switch Statement in MATLAB,LINGO,and Mathematical Modeling Competitions
Switch语句根据表达式的取值不同,分别执行不同的语句,其语句格式为:
switch 表达式case 表达式1 语句组1case 表达式2 语句组2……case 表达式m 语句组motherwise 语句组nend
Matlab
0
2024-11-04
Quaternion and 3D Rotation Interpolation A Mathematical Insight
Quaternions are an extension of the complex number concept, playing a crucial role in 3D space rotation. To better understand the relationship between quaternions and 3D rotations, we begin with the fundamentals of complex numbers, as there are notable parallels between the properties of complex numbers and their role in 2D rotation.
Complex numbers consist of real and imaginary components, where the imaginary unit (i) is defined as ( \sqrt{-1} ), so any complex number (z) can be represented as ( z = a + bi ), with (a) as the real part and (b) as the imaginary part, where (i^2 = -1). Complex numbers can be viewed as points or vectors in the complex plane, where the real part corresponds to the x-axis and the imaginary part to the y-axis. Complex addition and subtraction are straightforward, performed by adding or subtracting the real and imaginary parts, respectively.
Multiplication of complex numbers, however, is slightly more complex, requiring expansion and simplification using (i^2 = -1). A significant feature of complex multiplication is its connection to matrix multiplication. Specifically, every complex number can be associated with a particular 2x2 real matrix. For example, the complex number ( z = a + bi ) can be represented by the matrix:
[ \begin{bmatrix} a & -b \\ b & a \end{bmatrix} ]
This matrix form allows us to use matrix multiplication to perform complex number multiplication. During this process, we observe that complex number multiplication effectively corresponds to a rotation and scaling transformation in 2D space. For instance, the unit complex number 1 corresponds to the identity matrix, leaving points in the complex plane unchanged, while the imaginary unit (i) corresponds to a 90-degree rotation matrix, meaning that multiplying a complex number by (i) rotates it 90 degrees clockwise.
After grasping these complex fundamentals, we move to quaternions. Quaternions are a further extension of complex numbers into four-dimensional space. Each quaternion consists of a real part and three imaginary parts, generally written as ( q = w + xi + yj + zk ), where (w) is the real part and (x), (y), and (z) are the imaginary parts. The units (i), (j), and (k) follow distinct multiplication rules in four-dimensional space, where quaternion multiplication is analogous to complex multiplication yet complies with four-dimensional rules.
Quaternions are highly beneficial in 3D rotation operations because they avoid gimbal lock, a common issue with Euler angle representation. This makes quaternions a stable and continuous method for rotation interpolation, essential in computer graphics for 3D animation and simulation. Through quaternions, we can use linear algebra and basic geometry principles to intuitively derive and comprehend 3D spatial rotation. Quaternions provide direct representation of the rotation axis and rotation angle, while interpolating quaternions enables smooth transitions between two rotations. This is extremely helpful in animation and real-time rendering for creating fluid movement. For example, in game development and flight simulation, quaternions are often used to achieve coherent flight paths, allowing engineers to implement smooth motion.
算法与数据结构
0
2024-10-25
Exadata核心处理过程及其在SHOUG的应用 - Steven.Lee_.pdf
Exadata核心处理过程及其在SHOUG的应用是Steven.Lee_.pdf文档的关键内容。
Oracle
0
2024-08-31
R 全球发展分析:深入 R 社区
R 社区探索:巴特那加 2020 年 2-3 月编码项目详解
CRAN 探索
项目分析了以下 R 包及其依赖关系:
rvest
installr
ggplot2
data.table
cranlogs
lubridate
magrittr
tm
wordcloud
RColorBrewer
SnowballC
miniCRAN
igraph
cowplot
NLP
xml2
CRAN 探索内容包含十个部分:
网页抓取:包名称和摘要
包统计分析:短期数据
包统计分析:年度数据
最受欢迎的包:最后一天、最后一周、最后一个月
R 软件统计:已下载量
R 版本统计:已下载量
最依赖包
热门包关键词词云
热门包作者
包依赖关系网络图
详细内容:
统计分析
3
2024-05-21
R语言
R语言是一款开源、免费的软件,专门用于统计分析与图形制作,是统计计算和统计制图方面的理想工具。
统计分析
3
2024-05-20
R语言简介
R语言是一种广泛应用于科学计算和统计分析的通用编程语言。介绍了如何入门使用R语言。
统计分析
2
2024-07-15