系统风险
当前话题为您枚举了最新的系统风险。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
系统风险评估和分析框架MATLAB开发
此脚本计算和分析以下系统风险度量:组件测量如Kritzman等人的AR(吸收率)(2010),Allen等人的CATFIN (2012),Kinlaw & Turkington (2012)的CS(相关意外),以及Kritzman & Li (2010)的TI(湍流指数)。此外,还包括主成分分析连通性措施如DCI(动态因果指数)、CIO(“进出”连接)、CIOO(“进出-其他”连接),以及网络中心性指标如介数、度数、接近度、聚类。
Matlab
0
2024-08-09
Shapley 风险分解
给定协方差矩阵和权重向量,函数将返回每个资产的 Shapley 风险分解值。此外,还会计算 Euler 风险分解值以作对比。
Matlab
4
2024-05-25
基于大数据分析的实时风险管理系统
基于大数据的风险控制理念、体系架构、模型与策略,以及核心模块详细阐述。
算法与数据结构
3
2024-07-13
基于模拟系统的施工导流风险分析 (2006年)
施工导流系统风险分析采用Monte-car10计算机仿真方法,突破了传统设计只考虑单一水文不确定性因素和固定水力参数的局限。新方法基于多元不确定性因素的仿真计算,有效模拟了系统运行过程,预测堰前水位的不确定性。通过中心极限定理确定仿真最小运行次数,数据统计分析绘制出堰前水位的经验累计曲线和概率分布曲线。这种方法可以更准确地描述施工导流系统的风险。
统计分析
1
2024-08-03
金融模型风险密度探索
利用 MATLAB 开发的高级金融模型,深入了解期权定价中的风险中性密度。
Matlab
2
2024-05-25
数据挖掘助力商户风险评分
该系统运用数据挖掘技术,通过对海量数据进行分析,构建商户风险评分模型,帮助金融机构识别和评估商户风险,提升风控效率。
数据挖掘
6
2024-05-25
信用风险评分卡研究
使用 SAS 语言从头到尾详细介绍评分卡开发与实施,附带 SAS 宏代码示例。
数据挖掘
2
2024-05-25
计算风险价值 (VaR) 的方法
计算风险价值 (VaR) 的方法
本部分探讨几种计算风险价值 (VaR) 的常用方法:
数据可视化与标准化: 在进行 VaR 计算之前,对数据进行可视化分析和标准化处理至关重要。数据可视化帮助识别数据特征和潜在风险,而标准化则确保不同风险因素对 VaR 计算的影响一致。
历史模拟法: 历史模拟法是一种非参数方法,直接利用历史数据模拟未来的收益率分布。通过对历史收益率进行排序,可以得到不同置信水平下的 VaR 值。
基于随机收益率序列的蒙特卡罗风险价值计算: 蒙特卡罗模拟是一种强大的工具,可以模拟各种复杂的风险场景。通过生成大量的随机收益率序列,可以估计投资组合在不同情景下的潜在损失,进而计算 VaR。
基于几何布朗运动的蒙特卡罗模拟: 几何布朗运动是一种随机过程,常用于模拟资产价格的走势。通过假设资产价格服从几何布朗运动,可以利用蒙特卡罗模拟估计 VaR。
Matlab
3
2024-05-28
现代金融与电商中的实时风险监测系统
实时风控系统在现代金融和电商等领域中至关重要,能够即时监测交易行为,迅速发现潜在风险并作出响应。这个基于Spark-Streaming、Drools、Kafka和Redis的系统集成了大数据处理、规则引擎、消息队列和高速缓存等技术,为高效的风险管理提供了强大支持。Spark-Streaming以其高吞吐量、低延迟和容错性,特别适合处理大规模实时数据,能够实时接收和处理来自各种数据源的信息。Drools作为规则引擎,能够存储和执行复杂的业务逻辑和风险管理规则,例如识别潜在的恶意攻击行为。Kafka作为分布式消息中间件,确保数据的实时处理和分发,保障系统的稳定性和可靠性。Redis作为高性能键值数据库,用于存储实时风险评分和黑名单等关键数据,实现快速查询和更新。综合这些技术,实时风控系统能够高效地识别和应对各类风险,不断优化规则以应对变化中的欺诈手段。
spark
2
2024-07-13
基于系统性风险视角的基金投资组合配置策略.pdf
这篇资源是一篇金融工程领域的数学建模论文,主要涉及相关性计算、统计图表、历史数据分析、数据处理、经典算法及模型引用。
Matlab
1
2024-07-30