DENSE_RANK
当前话题为您枚举了最新的DENSE_RANK。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
Dense Subgraph Discovery Algorithms A Comprehensive Review
密子图发现算法综述
摘要
本章节主要综述了用于密子图发现的各种算法。密子图发现问题与聚类问题密切相关,但在定义密集区域的方式上更为灵活。探讨了单个或多个图上的密子图发现问题,对现有文献进行了系统性的整理和讨论,以便读者更容易理解这一主题。
关键词
密子图发现
图聚类
1. 引言
在各种网络中,密度是衡量重要性的关键指标。类似于地图上标注的城市位置,研究者们也关注图中的密集区域,这些区域通常表明高度交互、相互相似性或关键特征。理论上,密集区域具有较小的直径,使得内部路由操作更快捷,甚至支持简单的全局路由策略。
2. 图术语与密度度量
在探讨各种密子图发现算法之前,本节概述了图的基本术语及密度度量标准,包括节点、边、权重、连通性和图的直径等。此外,还介绍了几种常用的密度度量方法,如节点密度、边密度和平均度等,这些度量对算法设计至关重要。
3. 算法分类与代表性实现
本节将密子图发现算法分为以下几类,并介绍了相应的代表性实现:
基于邻域的方法:通过分析图中节点的邻域识别密集区域。例如,K-Core算法通过递归移除度小于k的节点找到核心密集子图。
基于模组性的方法:最大化图的模组性值以发现密集子图,模组性用于衡量图分割质量,是评估社区检测算法效果的指标。
基于频次的方法:在多图情境下寻找频繁出现的密集子图,涉及频繁子图模式发现的图挖掘技术。
每类算法均有其特定的应用场景和优缺点。基于邻域的方法简单快捷但性能有限;基于模组性的方法分割效果优质但计算开销大;基于频次的方法适用于多图情况,但在单一图上效果不佳。
算法与数据结构
0
2024-10-31
Hive分组取TopN与RowNumber、Rank、DenseRank用法详解
TopN:获取指定分组内满足指定条件的前N行数据。RowNumber:获取当前行在分组内排序后的行号。Rank:获取当前行在分组内去重排序后的行号。DenseRank:获取当前行在分组内不去重排序后的行号。
Hive
4
2024-05-28
Python代码实现分级Rank2NMF(Hierarchical NMF)
展示了NMF(非负矩阵分解)在Python中的分级Rank2 NMF实现,适用于Python 3.6及以上版本,基于Numpy库的参考代码。以下为该算法的基本流程和实现步骤:
采用分级Rank2 NMF方法,逐步分解矩阵,并进行层次性分解。
使用Python的Numpy库进行数值计算,简化实现过程。
以下为该算法的Python实现代码示例:
import numpy as np
# 假设输入矩阵X为m×n维
X = np.random.rand(10, 10)
# 设置NMF的秩(rank)为2
rank = 2
# 初始化W和H矩阵
W = np.random.rand(X.shape[0], rank)
H = np.random.rand(rank, X.shape[1])
# 进行迭代更新(梯度下降或其他方法)
for i in range(100):
H = H * np.dot(W.T, X) / np.dot(W.T, np.dot(W, H))
W = W * np.dot(X, H.T) / np.dot(np.dot(W, H), H.T)
# 输出分解结果
print('W matrix:')
print(W)
print('H matrix:')
print(H)
此代码实现了简单的Rank2 NMF,适用于更复杂的分级结构,通过调整算法细节可进行更深层次的分解。
NMF可以广泛应用于图像处理、文本分析等领域,尤其在处理稀疏矩阵时具有优势。
Matlab
0
2024-11-05
Matlab Implementation of the Stagnant Growth Model-Residual-Dense-Network-Caffe
Matlab阻滞增长模型代码 - 残留稠密网络(RDN)(Caffe)是基于论文实现的:“Y. Zhang, Y. Tian, Y. Kong, 等,2018。用于图像超分辨率的残留密集网络。CVPR,第2472-2481页。” 该实现要求的环境配置如下:操作系统: CentOS 7 (Linux kernel 3.10.0-514.el7.x86_64)CPU: Intel Xeon(R)E5-2667 v4 @ 3.20GHz x 32内存: 251.4 GBGPU: NVIDIA Tesla P4, 8GB软件:- Cuda 8.0(已安装Cudnn)- Caffe(需要matcaffe接口)- Python 2.7.5- Matlab 2017b
数据集:数据集与论文中提供的相同,读者可以直接使用或从提供链接下载。- 将“火车”目录复制到“ Caffe_ROOT / examples /”并将其重命名为“ RDN”- 将数据集准备到“数据”目录中- (可选)在Matlab中运行“data_aug.m”进行数据增强,命令示例:data_aug('data/')。
运行流程:1. 准备环境并安装所有依赖。2. 配置数据集路径并进行数据增强(可选)。3. 使用Caffe训练模型并进行图像超分辨率任务。4. 验证模型效果并进行结果分析。本实现展示了如何通过RDN模型提升图像超分辨率任务的性能,适用于需要高效超分辨率算法的计算机视觉应用场景。
Matlab
0
2024-11-06