公轭梯度法
当前话题为您枚举了最新的 公轭梯度法。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
FR共轭梯度法的详细求解过程
FR共轭梯度法是一种优化算法,通过输入目标函数、初始点和所需精度,能够逐步计算出求解过程。每一步迭代的结果均可详细打印,非常适合初学者学习和教材对应。
Matlab
2
2024-07-31
共轭梯度法在图像处理中的应用探讨
共轭梯度法与图像处理
在数字图像处理领域,共轭梯度法作为一种经典的优化算法,常被用于解决各种问题。例如,在冈萨雷斯《数字图像处理》(第三版英文版)第四章中,就介绍了如何利用共轭梯度法进行图像复原。
泰勒展开与共轭梯度法
书中阐述了如何利用泰勒展开公式推导出共轭梯度法的迭代公式,从而实现对目标函数的优化。
Matlab
3
2024-05-23
基于梯度法的MATLAB三维射线追踪路径获取
在MATLAB环境中,通过梯度法精准计算三维空间中射线的传播路径,实现对射线轨迹的追踪。
Matlab
5
2024-05-12
Matlab实现共轭梯度法优化非线性最小二乘问题
在Matlab中,共轭梯度法是一种常用的优化算法,用于求解非线性最小二乘问题。该算法通过迭代求解目标函数,使得其梯度逐渐减小,最终达到最小值。下面是一个使用Matlab实现共轭梯度法的示例代码。
示例代码:
function [result, x_result, num] = conjungate_gradient(f, x0, epsilon)
syms lambdas;
n = length(x);
nf = cell(1, n);
for i = 1 : n
nf{i} = diff(f, x{i});
end
nfv = subs(nf, x0);
nfv_pre = nfv;
count = 0;
k = 0;
xv = x0;
d = - nfv;
while (norm(nfv) > epsilon)
xv = xv + lambdas * d;
phi = subs(f, xv);
nphi = diff(phi);
lambda = solve(nphi);
lambda = double(lambda);
xv = subs(xv, lambdas, lambda);
xv = double(xv);
nfv = subs(nf, xv);
count = count + 1;
k = k + 1;
alpha = sumsqr(nfv) / sumsqr(nfv_pre);
d = -nfv + alpha * d;
nfv_pre = nfv;
if k >= n
k = 0;
d = - nfv;
end
end
result = double(subs(f, xv));
x_result = double(xv);
num = count;
end
输入参数说明:
f:目标函数表达式
x0:变量的初始值
epsilon:误差限,控制迭代精度
输出结果:
result:目标函数的最小值
x_result:对应最小值的变量解
num:总迭代次数
示例测试
在测试中,我们求解以下非线性最小二乘问题:$$f(x) = x_1^2 + 2x_2^2 - 4x_1 - 2x_1x_2$$可以通过该共轭梯度法实现。
总结
使用共轭梯度法可在Matlab中快速优化非线性最小二乘问题,通过迭代过程逐渐接近目标函数的最小值,是求解复杂优化问题的有效方法。
算法与数据结构
0
2024-10-25
公建能耗分析与优化研究
基于大型公建分项计量数据,建立能耗节诊断方法,对典型应用案例进行分析,提出分项计量数据挖掘技术,通过积累案例、提炼算法、提高准确性,为基于初始分析的节能诊断提供依据。
数据挖掘
6
2024-05-01
用Matlab优化二次函数共轭梯度法与DFP方法应用
在Matlab中,我们可以使用共轭梯度法和DFP方法来优化二次函数,实现极值的求解。这两种方法不仅仅是理论上的选择,它们在实际应用中也展现出了显著的效果。以下是一个具体的应用案例。
Matlab
0
2024-09-25
大型公建能耗计量系统设计与应用
介绍了大型公建实施能耗计量的背景和目的,基于实际工程实施典型经验,总结了能耗计量的方法、原则以及应注意的典型问题。通过对实际能耗计量数据进行数据挖掘与能耗分析,为开展节能诊断和制定节能改造实施方案提供指导。
数据挖掘
0
2024-11-05
计算子梯度优质算法
这个算法用于计算函数的梯度。
Matlab
3
2024-07-27
梯度下降法 Matlab 程序
实现梯度下降法的 Matlab 程序,需要输入具体参数。
Matlab
4
2024-04-30
运营商数据标签抽取使用梯度下降和牛顿法优化rosenbrock函数最小化实例
在运营商数据标签抽取领域,计算需求、数据模型、计算策略分析和计算流程等方面的进展日益重要。特别是在用户流失率预测的模型标签计算示例中,设计了朴素贝叶斯算法来解决概率分类问题。
spark
4
2024-07-13