Deep-SR-ITM
当前话题为您枚举了最新的 Deep-SR-ITM。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
Deep SR-ITM MATLAB代码优化范围设定
这是Deep SR-ITM(ICCV 2019)的官方存储库,提供训练、测试代码及训练好的权重和数据集(训练+测试)。我们的论文在ICCV 2019上接受了口头报告,详细介绍了Deep SR-ITM的超分辨率和反色调映射联合学习应用于4K UHD HDR的情况。我们的代码使用MatConvNet实现,需要MATLAB环境,并已在MATLAB 2017a、MatConvNet 1.0-beta25、CUDA 9.0、10.0、cuDNN 7.1.4及NVIDIA TITAN Xp GPU下进行了测试。请参考以下详细安装说明并下载源代码到您的目录。
Matlab
2
2024-07-20
Pytorch实现的Deep-SR-ITM逆变换代码一个ICCV 2019口头报告的详细解析
通过Pytorch重新实现的Deep-SR-ITM,该模型结合超分辨率和逆色调映射,特别设计用于4K UHD HDR应用。研究团队金秀艺、吴志亨和金曼彻尔在IEEE计算机视觉国际会议上进行了口头报告。代码基于原Matlab版本转换而来,保留了原始设置,重点不在改进基线,而在于提供不同实现的选择。测试环境包括Ubuntu 16.04 LTS,Python 3.7.5,Pytorch 1.3.1,TorchVision 0.4.2,CUDA 10.1,OpenCV 3.4.2。数据准备阶段包括从.mat格式转换为'.png'格式,适用于SDR和HDR图像。如需更多细节,请参阅原始repo。
Matlab
0
2024-08-04
Deep Learning Trends and Fundamentals
深度学习历史趋势
一、深度学习历史趋势
神经网络的众多名称和命运变迁:
早期发展:20世纪50年代末至60年代初,神经网络研究开始兴起,受到广泛关注。
第一次寒冬:1970年代,由于理论和技术上的限制,神经网络研究进入低谷期。
反向传播算法的引入:1980年代中期,反向传播算法的提出极大地推动了神经网络的研究和发展。
第二次寒冬:1990年代中期,尽管有了突破性的进展,但由于计算资源和数据量的限制,神经网络再次遭遇挫折。
深度学习的复兴:21世纪初至今,随着GPU技术的发展、大数据时代的到来以及算法的不断创新,深度学习迎来了爆发式的增长。
与日俱增的数据量:
互联网时代:随着互联网的普及,数据生成的速度大大加快。
社交媒体:社交媒体平台成为海量数据的重要来源之一。
物联网:各种传感器设备不断收集环境数据,进一步丰富了数据资源。
大数据技术:Hadoop等大数据处理框架为存储和处理大规模数据提供了技术支持。
与日俱增的模型规模:
参数数量增加:随着模型复杂度的提升,模型中的参数数量也在不断增加。
深层架构:从最初的几层到现在的上百层甚至更多,神经网络的层数不断增加。
并行计算:GPU等硬件技术的进步使得大型模型的训练成为可能。
与日俱增的精度、复杂度和对现实世界的冲击:
精度提升:随着模型的改进,识别和预测的准确率不断提高。
应用场景扩展:从图像识别到自然语言处理,再到推荐系统等领域,深度学习的应用范围越来越广泛。
社会经济影响:人工智能技术的发展对各行各业产生了深远的影响,促进了产业升级和社会变革。
二、应用数学与机器学习基础
线性代数:
标量、向量、矩阵和张量:介绍了这些基本概念及其在深度学习中的应用。
矩阵和向量相乘:讲解了如何进行矩阵和向量之间的乘法操作。
单位矩阵和逆矩阵:单位矩阵是重要的特殊矩阵,逆矩阵对于解决线性方程组等问题至关重要。
线性相关和生成子空间:线性相关的概念有助于理解数据的空间表示。
范数:范数可以用来衡量向量或矩阵的大小和特性。
算法与数据结构
0
2024-10-31
Advanced MongoDB Part 3 Deep Dive
In this part of our MongoDB series, we delve deeper into advanced MongoDB concepts, covering topics such as sharding, replication, and aggregation pipelines. By mastering these, you can optimize database performance and ensure high availability in large-scale applications. Sharding allows MongoDB to distribute data across multiple servers, enhancing capacity and reliability. Replication provides data redundancy, crucial for disaster recovery. Lastly, aggregation pipelines offer a powerful framework for complex data analysis within MongoDB.
MongoDB
0
2024-10-25
ndarray-basic-operations-introduction-to-deep-learning-frameworks
NDArray基本操作对NDArray的基本数学运算是元素粒度的:
# 创建两个全为1的NDArray
a = mx.nd.ones((2,3))
b = mx.nd.ones((2,3))
# 元素级加法
c = a + b
# 元素级减法
d = -c
# 元素级幂和正弦运算,然后转置
e = mx.nd.sin(c**2).T
# 元素级最大值
f = mx.nd.maximum(a, c)
f.asnumpy()
算法与数据结构
0
2024-10-31
AdventureWorks2008R2_SR1 数据库示例
Microsoft SQL Server 测试数据库示例 AdventureWorks2008R2_SR1。
SQLServer
3
2024-05-30
Fixing Bug in PSNR Calculation MATLAB Code for PIRM-SR Challenge on Ubuntu
PSNR Calculation MATLAB Code for PIRM-SR Challenge
The PIRM-SR challenge aims to compare and rank perceptual single-image super-resolution methods. In terms of perceptual quality, state-of-the-art methods often perform poorly when evaluated with 'simple' distortion metrics like PSNR and SSIM. Hence, in contrast to previous challenges, the evaluation and ranking will focus on perceptual quality, adopting a unified approach that combines algorithm accuracy with perceptual quality. This allows perceptual-driven methods to compete with those designed to maximize PSNR.
To self-verify your method, use this MATLAB code to compute RMSE and perceptual scores for your output on a self-validation set. Here's how to quickly get started:
Copy your output to the your_results folder in the base directory.
Copy only the HR images to the self_validation_HR folder.
Download and extract the SR-Metric toolbox into the utils/sr-metric-master folder.
Run the evaluate_results.m script.
Troubleshooting
Depending on your operating system, you might need to recompile the MEX files in the matlabPyrTools toolbox. If that's the case, follow these steps:- Navigate to utils/sr-metric-master/external/matlabPyrTo and recompile the MEX files.
Matlab
0
2024-11-06
Deep Belief Network(DBN)Based Handwritten Digit Recognition Implementation
Code provided by Ruslan Salakhutdinov and Geoff Hinton. Permission is granted for anyone to copy, use, modify, or distribute this program and accompanying programs and documents for any purpose, provided this copyright notice is retained and prominently displayed, along with a note saying that the original programs are available from our web page. The programs and documents are distributed without any warranty, express or implied. As the programs were written for research purposes only, they have not been tested to the degree that would be advisable in any important application. All use of these programs is entirely at the user's own risk.
How to make it work:1. Create a separate directory and download all these files into the same directory.2. Download from http://yann.lecun.com/exdb/mnist the following 4 files:- train-images-idx3-ubyte.gz- train-labels-idx1-ubyte.gz- t10k-images-idx3-ubyte.gz- t10k-labels-idx1-ubyte.gz3. Unzip these 4 files by executing:- gunzip train-images-id
Matlab
0
2024-11-06
Spring Cloud Stream 应用描述符:Celsius.SR3 分析
档深入探讨了 spring-cloud-stream-app-descriptor-Celsius.SR3.stream-apps-kafka-10-docker 的技术细节,分析其在 Spring Cloud Stream 生态系统中的作用和应用。
kafka
3
2024-06-22
Deep Dive into Apache Flink Real-time Data Processing Mastery
Apache Flink深度解析
Apache Flink是一个开源的流处理和批处理框架,专注于实时数据处理。Flink的设计目标是提供低延迟、高吞吐量的数据处理能力,同时支持事件时间和状态管理,使其在大数据领域中成为了重要的工具。将深入探讨Flink的核心概念、架构、API以及实际应用案例。
1. Flink核心概念
流与数据流模型:Flink基于无界数据流模型,意味着它可以处理无限的数据流,而不仅限于批处理。数据流由数据源(Sources)和数据接收器(Sinks)组成。
事件时间:Flink支持事件时间处理,这是实时处理中至关重要的概念,基于数据生成的时间而非处理时间。
状态管理:Flink允许操作符在处理过程中保持状态,这对于实现复杂的数据转换和计算至关重要。
窗口(Windows):Flink提供多种窗口机制,如滑动窗口、会话窗口和tumbling窗口,可根据时间或数据量定义窗口,进行聚合操作。
2. Flink架构
JobManager:作为Flink集群的控制中心,负责任务调度、资源管理和故障恢复。
TaskManager:负责执行计算任务,接收JobManager分配的任务,并与其他TaskManager进行数据交换。
数据流图(Data Stream Graph):每个Flink作业表示为一个有向无环图(DAG),其中节点代表算子(operators),边代表数据流。
3. Flink API
DataStream API:用于处理无界数据流,提供丰富的算子,如map、filter、join和reduce等。
DataSet API:处理有界数据集,适用于批处理场景,但也可在流处理中使用。
Table & SQL API:自Flink 1.9引入,提供SQL风格的查询接口,简化了开发过程。
4. Flink的实时处理
状态一致性:Flink提供几种状态一致性保证,如exactly-once和at-least-once,确保数据处理的准确性。
检查点(Checkpoints)与保存点(Savepoints):通过周期性检查点和可恢复保存点提升了Flink的容错机制。
flink
0
2024-10-25