vi-HMM

当前话题为您枚举了最新的 vi-HMM。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

MATLAB实现的vi-HMM模型代码概述
我们的方法采用MATLAB编写,介绍了一种通过隐马尔可夫模型(HMM)识别SNP和Indel的新方法。该模型通过读取带有Phred + 33编码质量得分的SAM文件和参考基因组(FASTA文件)来确定每个位置最可能的突变状态。它生成TXT格式的状态信息报告变体,并提供了将TXT格式转换为变体调用文件(VCF)格式的代码。用户可以从解压缩包中获取并使用该程序。在MATLAB中,将当前工作目录更改为“ vi-HMM”文件夹,其中包含按组织存储的子文件夹和代码。要运行程序,请将“ vi-HMM”及其子目录添加到MATLAB路径中(使用命令>> addpath(genpath(pwd)))。分析所需的
LabVIEW SQLite VI 工具包
该资源提供已封装好的 LabVIEW VI,用于与 SQLite 数据库进行交互。可直接添加到用户库中,方便调用。
Simulink 心电图 VI1 模块开发
档提供了 VI1 模块的 Simulink 实现。该模块用于检测心电图信号中的 VI1 波段。
HMM学习研究的必备读物
HMM是一种用于语音模型识别的先进算法,在数据挖掘和文本分类等机器学习领域具有重要应用。
HMM MATLAB Toolbox Usage and Detailed Explanation
本篇文章将详细阐述MATLAB中HMM工具包的各个函数的使用方法,并以投两个骰子为例进行解析。主要内容包括: 转移矩阵与混淆矩阵的生成,利用这两个矩阵生成随机的观察序列和隐藏序列。 维特比算法(Viterbi)的实现,通过该算法进行最优路径的计算。 通过训练来估计转移矩阵和混淆矩阵的函数运用。 在每个部分中,将提供具体的代码示例及详细注释,帮助大家深入理解HMM的应用。
使用Matlab实现HMM模型的代码示例
在这个示例中,我们展示了如何使用Matlab编写和运行HMM模型的代码。示例数据文件包括1.dat和2.dat,这些文件包含了排放量和状态的数据。我们在train.m中提供了代码,用于加载和处理这些数据,并用最大似然估计初始化模型。通过调整初始状态分布,我们确保模型的准确性。此外,我们还展示了如何通过javac和java调用Matlab控制包matlabcontrol-4.1.0.jar来运行Hmm.java文件。
LabSQL中的四个关键VI功能详解
在LabVIEW编程环境中,SQL的使用常涉及数据库操作,如查询、添加、更新和删除数据。LabSQL中的四个特定Visual Interface(VI)程序对应四个关键功能模块。首先,ADO Recordset Create.vi用于创建ActiveX Data Objects的Recordset对象,执行数据库查询或操作数据。其次,ADO Recordset Addnew.vi用于插入新记录,通过AddNew方法添加新空白记录并设置字段值。再者,ADO Recordset Find.vi支持在Recordset中搜索特定条件的记录。最后,ADO Recordset Delete Record
HMM隐马尔可夫模型算法的实现
隐马尔可夫模型(HMM)作为一种统计分析模型,诞生于20世纪70年代,并在80年代得到广泛传播和发展,成为信号处理的重要方向。目前,HMM已成功应用于语音识别、行为识别、文字识别以及故障诊断等多个领域。
使用Matlab实现EM算法的HMM分类器
该存储库包含一组Matlab代码,用于基于EM算法训练和测试多类隐马尔可夫模型分类器。这些代码已应用于情感动作识别和手势识别等连续观察领域。
使用EM算法和Matlab实现HMM单高斯模型
在这个项目中,我们计划使用EM算法来训练针对孤立词数据的HMM模型,同时考虑Viterbi算法在测试阶段的应用。我们的实验结果显示,通过Matlab编程实现的性能与HTK相当。尽管尚未准备数据文件(.mfcc文件),但您可以根据自己的数据进行处理。如果需要,您可能需要修改“generate_trainingfile_list.m”和“generate_testingfile_list.m”中的代码以匹配数据文件的路径。请运行“EM_HMM_isolated_digit_main.m”来开始您的实验。如需更多信息,请在评论中留言。此外,您可以通过指定的链接免费获取数据文件:选择“隔离的TI数字培