加速度传感器

当前话题为您枚举了最新的 加速度传感器。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

基于加速度计和陀螺仪的传感器数据采集与存储
该应用利用安卓设备内置的微机械结构(加速度计和陀螺仪)采集传感器数据。采集到的数据不仅可以实时同步到移动浏览器,还可以存储到SQLite数据库中,用于后期的数据挖掘分析。
MatLAB函数谱加速度、速度和位移谱计算工具
该MatLAB函数用于根据给定的阻尼比(例如,5%的临界值)生成伪谱加速度(PSA)、伪谱速度(PSV)和谱位移(SD)谱。谱坐标适用于单位质量的线弹性单自由度系统。示例demo.m文件位于压缩文件夹中,展示了如何使用该函数,并包含了PSA、PSV和SD谱的绘图功能。
无速度传感器感应电机驱动器神经估计器用于启用异步电机驱动器的无速度传感器操作
这个模型展示了使用前馈神经网络(静态神经网络)来精确估计感应电机的机械速度。在这类任务中,主要挑战在于建立有效的速度近似模型。模型基于六个启发式信号,详细描述了在零定子磁通频率下的失败情况及其不可观察系统的特点。对于零频率控制需求,需要采用其他技术。有关控制器调整的更多详细信息,请参阅相关链接。
小波阈值滤波matlab代码-堕落检测器(Android应用程序)使用智能手机的内置加速度传感器的FallDetector应用
小波阈值调整matlab代码Fall Alerter应用程序使用智能手机的内置加速度传感器创建Fall Alerter应用程序。在发生跌倒时,用户可能会失去意识并可能需要外部帮助,因此该应用程序将通过短信和跌倒位置的GPS数据向护理人员发送警报。用户界面包括一个图表,显示手机的加速度数据和紧急联系人列表。如果检测到跌倒事件,应用程序将启动一个10秒倒计时,并提醒紧急联系人列表。用户可以关闭警报,如果是误报或即使发生跌倒也不需要帮助。该应用程序的演示如下。下图显示了坠落事件期间的加速度变化。每个跌倒事件都有其独特的特征。当手机跌落时,加速度计值开始减小。当自由落体事件结束并撞击地面时,我们会观察到突然的尖峰。测试表明,在跌倒事件中观察到类似的变化。传感器API使用三维坐标系来获取加速度数据。加速度计的值通过对每个尺寸的平方求和,然后求和并求平方根来计算。这样可以获得矢量方向的大小。当手机处于静止状态时,加速度值约为9.8 m/s²。跌倒检测算法使用离散小波变换来提取要与输入加速度数据进行比较的特征向量。选择了具有32个采样点的Meyer小波作为母小波。
无传感器反馈的转子位置与速度控制简介
在永磁同步电机的磁场定向控制中,转子位置和速度的准确测量至关重要。传统上使用霍尔传感器或编码器来实现这一目的,但无传感器方法因其降低成本、提高可靠性等优势而备受关注。基于状态观测理论提供了一种完整的无传感器算法解决方案,适用于各种同步电机类型。理论与实践的对比显示,所提出的观察器方法显著减少了对电机参数变化的依赖,增强了整体稳定性。具体实现中,系统实时评估电机内部状态,包括反电动势和相电流,并通过增益向量调整观察器模型以达到最佳效果。
利用飞机距离测量值估计飞机距离、速度和加速度
描述了如何通过距离、径向速度和径向加速度来仿真飞机的运动轨迹。具体步骤包括假设目标的真实运动轨迹,并以50ms间隔生成观测数据,绘制目标的真实和估计运动轨迹,以及预测和更新目标位置、速度和加速度方差。
将ECI转换为ECEF坐标转换位置、速度和加速度
将伪地球固定惯性坐标转换为地心地固坐标系(ECEF)的位置、速度和加速度。此函数已经优化为向量化,以提高运算速度。示例函数调用: >> [r_ECEF v_ECEF a_ECEF] = ECItoECEF(JD,r_ECI,v_ECI,a_ECI); 其中:JD是儒略日期向量[1 x N](单位为天),r_ECI是位置向量[3 x N],v_ECI是速度矢量[3 x N],a_ECI是加速度矢量[3 x N]。
传感器数据知识挖掘
本合集汇聚了有关传感器数据挖掘的论文,涵盖数据流挖掘、智能建筑创建等研究领域。
转速梯度、轴速度和加速度的动态响应函数-开发MATLAB
在齿轮驱动的高精度定位器中,轴位置数据由安装在轴上的传感器收集,速度数据则由安装在执行器上的另一个传感器测得。转速梯度是测得的速度与轴上速度之间的比例,由齿轮比、传感器特性和测量比例确定。为确保设计预期,需要在安装和测试期间测量转速梯度、速度和加速度。该函数利用大步长记录时间、命令、轴上位置和非轴上速度来估计这些参数。
无线传感器网络协议与架构
单节点架构 硬件组件 传感器节点硬件概述: 传感器节点是构成无线传感器网络的基本单元,其硬件构成直接影响网络的性能、功耗和成本。本章将概述传感器节点硬件的主要组成部分,包括控制器、存储器、通信模块、传感器与执行器以及电源等,并分析各部分的功能和相互关系。 控制器: 作为传感器节点的“大脑”,控制器负责处理数据、控制节点行为以及与其他节点进行通信。本章将介绍常用控制器的类型、架构以及关键性能指标,并探讨其对传感器网络性能的影响。 存储器: 存储器用于存储传感器采集的数据、程序代码以及其他必要信息。本章将分析不同类型存储器的特点,如 RAM 和 ROM,以及它们在传感器节点中的应用场景。此外,还将讨论存储器容量、读写速度和功耗等因素对传感器网络性能的影响。 通信设备: 通信设备是传感器节点与外界交互的关键组件,负责数据的发送和接收。本章将介绍无线传感器网络中常用的通信技术,如 ZigBee、蓝牙和 WiFi,并分析其特点、适用范围以及优缺点。 传感器与执行器: 传感器负责感知周围环境的变化,并将物理量转换为电信号;执行器则根据控制器的指令执行相应的动作。本章将介绍各种类型传感器和执行器的原理、特性以及应用领域,并探讨其与传感器节点其他组件的集成问题。 传感器节点的电源: 电源是传感器节点正常工作的保障。本章将介绍传感器节点常用的电源类型,如电池、太阳能和能量收集,并分析其特点、优缺点以及适用场景。此外,还将讨论电源管理技术对延长传感器网络寿命的重要性。 传感器节点能耗 不同工作状态下的功耗: 传感器节点在不同的工作状态下,其功耗差异很大。本章将分析传感器节点的典型工作状态,如休眠、采集数据、发送数据等,并详细介绍各状态下的功耗特点。 微控制器的能耗: 微控制器是传感器节点主要的能量消耗部件之一。本章将分析微控制器的能耗构成,并介绍降低微控制器能耗的策略,如低功耗模式、动态电压频率调节等。 存储器: 不同类型的存储器具有不同的功耗特性。本章将比较 RAM 和 ROM 的功耗差异,并探讨降低存储器能耗的方法。 无线电收发器: 无线电收发器是传感器节点中另一个主要的能量消耗部件。本章将分析无线电收发器的能耗构成,并介绍降低其能耗的技术,如低功耗通信协议、休眠机制等。 计算与通信之间的关系: 传感器节点的能量消耗与计算和通信密切相关。本章将探讨计算和通信之间的权衡关系,并介绍优化策略以降低整体能耗。 功耗模型: 建立准确的功耗模型对于评估和优化传感器网络的能耗至关重要。本章将介绍常用的传感器节点功耗模型,并分析其适用范围和局限性。 第一部分 架构