网络流算法
当前话题为您枚举了最新的 网络流算法。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
基于数据流和点对点网络的动态推荐算法研究
推荐算法在数据挖掘中广泛应用,但当前主要针对静态数据,缺乏对动态数据的适应性。提出基于数据流的推荐算法,通过点对点网络替代传统参数服务器,解决了分布式平台中滞后梯度和掉队者问题。算法引入了遗忘策略和异常评分检测,基于Flink框架设计实现,并在MovieLens-1m数据集上验证。实验结果显示,该算法保持推荐准确率的同时,显著降低了通讯开销。
数据挖掘
15
2024-07-17
基于滑动时间衰减窗口的网络流频繁项集挖掘算法
网络流数据频繁项集挖掘是进行网络流量分析的基础。STFWFI 算法采用基于字典顺序前缀树 LOP-Tree 的方法进行频繁项集挖掘,并引入了更符合网络流特性的滑动时间衰减窗口模型,从而有效降低了时间和空间复杂度。此外,该算法还提出了一种基于统计分布的节点权值计算方法 SDNW,替代了传统的统计方法,提高了网络流节点估值的精确度。实验结果表明,STFWFI 算法在网络流频繁项集挖掘中表现出良好的性能。
数据挖掘
11
2024-05-20
线性规划与网络流优化建模指南
线性规划和网络流的结合,用一句话总结就是:在各种有限资源下,怎么用最聪明的方式搞定问题。《线性规划与网络流》的内容覆盖挺全面的,线性规划部分讲了变量、目标函数、约束啥的,像单纯形法、内点法这些常见算法都有提到;网络流部分就更接地气了,像最大流、最小生成树,还有Ford-Fulkerson和Edmonds-Karp方法都有详细展开。工具推荐也蛮实在的,像MATLAB、Gurobi这些都比较专业;想玩开源的话,GLPK、COIN-OR也挺不错。用这些工具,你可以快把一个交通调度或供应链问题建模出来,跑一下就能知道最优解。而且哦,这类问题基本上都能转化成线性约束 + 目标函数的组合形式。你只要搞清楚
算法与数据结构
0
2025-06-30
数据流挖掘聚类算法综述
数据流环境下的聚类算法其实蛮有意思的,适合你这种做前端又关心实时数据的开发者。CluStream这种用微簇方式做增量更新的思路,挺适合边采边的场景,像监控图、用户行为流都能派上用场。要是你用过Spark Streaming或者Flink,那搭配起来更方便,流式数据和聚类结合得刚刚好。嗯,想搞点实时预警、流数据摘要啥的,可以考虑看看里面提到的StreamCluster或者CoresStream,响应也快,代码也不复杂。
数据挖掘
0
2025-06-14
数据流近似频繁项挖掘算法
数据流的频繁项挖掘,用起来最头疼的就是资源吃紧还不能多次遍历数据。你要是也被这个问题困扰过,可以看看这篇文章提出的算法,挺轻巧的一个思路,专门用来近似频繁项挖掘的问题,关键是速度快,内存占用还少。空间复杂度只有 O(ε⁻¹),意思就是内存用得省。每来一个数据项,平均时间也就 O(1),适合那种高频高速的数据流。像网络日志、传感器数据这些场景,挺适合直接上。整个算法核心就仨步骤:初始化、更新、查询。初始化时搞个紧凑的数据结构,比如滑动窗口;一边读数据一边更新;想查哪个项的频率就查,挺快的。误差也可控,你可以通过调整 ε,来平衡准确性和性能。对了,它实验过多数据集,表现还不错,在大规模数据下也跑得
数据挖掘
0
2025-07-05
网络流异常监测及可视化技术研究
网络流量分析揭示了网络运行情况,识别异常行为,提升网络安全感知能力。为了实时监测网络流量和异常情况,应对大规模和复杂的数据挑战,研究提出了准实时流量报告机制,并设计了基于三维可视化的监测系统。结合信息熵方法挖掘流量异常,通过数据挖掘和人工监测实现了异常流量可视化监测,提升了监测成功率。系统设计方案和实施成果详述了网络态势的直观展现,加强了用户的网络感知能力。
数据挖掘
19
2024-07-15
基于网络业务流的数据挖掘分析方法(2008年)
为了从业务角度评价和优化网络性能,提出了一种新的网络业务分析方法——具有时态路径约束的关联规则挖掘分析方法。该方法以网络业务为分析对象,利用网络业务流的时态属性和路径属性作为约束条件,对大量的历史数据进行挖掘分析。在关联规则挖掘过程中,通过引入事务标号,同时计算候选频繁项集的支持度,避免了传统的数据库扫描操作,极大提高了挖掘效率和速度。实验结果表明,随着挖掘数据量的增加,该方法的性能和效率得到了显著提升。
数据挖掘
12
2024-08-04
VarNetRecon 张量流中图像重建的变分网络的实现
这是MR提出的用于MR图像重建的通用变分网络(循环展开)的实现,通过技术进步引领下的图像重建。MRI数据用于训练网络并描述了应用过程。使用10层7x7滤镜,每层30个滤镜和35节以激活参数,利用三次插值进行激活。训练使用了完全采样的128x128心脏短轴MR图像,并人工生成了平滑相位偏移。通过回顾性地对k空间进行欠采样达到约3的加速因子。与总变异(TV)规范化重构进行了比较。重构网络的每一层学习了过滤器和激活函数。
Matlab
14
2024-09-27
离线数据流聚类算法的进展与优化
离线数据流聚类算法在数据挖掘中具有重要意义。该部分采用改进的k-means算法:(1)初始阶段不再随机选择种子,而是选择可能被划分到给定簇的种子,这些种子实际上是对应微簇的中心;(2)划分阶段,一个种子到一个“伪数据点”(即微簇)的距离等于它到“伪数据点”中心的距离;(3)调整阶段,一个给定划分的新种子被定义为那个划分中带权重的微簇中心。
算法与数据结构
16
2024-08-27
Kohonen聚类算法:网络入侵案例
本资源提供Kohonen神经网络在网络入侵聚类分析中的应用实例。
Matlab
7
2024-05-15