这是MR提出的用于MR图像重建的通用变分网络(循环展开)的实现,通过技术进步引领下的图像重建。MRI数据用于训练网络并描述了应用过程。使用10层7x7滤镜,每层30个滤镜和35节以激活参数,利用三次插值进行激活。训练使用了完全采样的128x128心脏短轴MR图像,并人工生成了平滑相位偏移。通过回顾性地对k空间进行欠采样达到约3的加速因子。与总变异(TV)规范化重构进行了比较。重构网络的每一层学习了过滤器和激活函数。