为了从业务角度评价和优化网络性能,提出了一种新的网络业务分析方法——具有时态路径约束的关联规则挖掘分析方法。该方法以网络业务为分析对象,利用网络业务流的时态属性和路径属性作为约束条件,对大量的历史数据进行挖掘分析。在关联规则挖掘过程中,通过引入事务标号,同时计算候选频繁项集的支持度,避免了传统的数据库扫描操作,极大提高了挖掘效率和速度。实验结果表明,随着挖掘数据量的增加,该方法的性能和效率得到了显著提升。
基于网络业务流的数据挖掘分析方法(2008年)
相关推荐
基于RoughSet的医疗数据挖掘应用分析(2008年)
利用基于区分矩阵的计算方法简化了从病历样本数据出发的医疗信息处理过程,使其更为高效和便捷。所得的产生式分类规则简明易懂,具有实际应用的参考价值。
数据挖掘
3
2024-07-16
基于复杂网络的学生社交网络模型研究(2008年)
利用实证数据分析QQ网络,研究了基于Internet的学生社交网络模型。通过比较网络度分布和特征参数,发现QQ网络与传统BA模型存在显著差异。提出了一种新的网络演化模型,并通过统计分析验证其与QQ网络参数的高度一致性,为学生社交网络研究提供了新的理论支持。
统计分析
0
2024-08-18
基于数据挖掘的个人银行业务客户行为分析
基于数据挖掘的个人银行业务客户行为分析
摘要
本研究利用数据挖掘技术,深入分析银行个人客户的行为模式。通过探究客户的交易数据、产品使用情况以及其他相关信息,识别客户的金融需求和偏好,为银行制定精准的营销策略和风险管理措施提供支持。
主要内容
数据收集与预处理: 从银行内部系统和外部数据源获取客户数据,并进行清洗、整合和转换,构建分析所需的数据集。
客户细分: 运用聚类、分类等数据挖掘算法,将客户群体划分为具有不同特征的细分市场,以便进行差异化服务。
行为模式识别: 分析客户的交易频率、金额、渠道偏好等行为特征,识别客户的金融需求和潜在风险。
预测模型构建: 建立预测模型,预测客户未来的行为,例如产品购买、流失风险等,为银行的营销和风险管理提供决策支持。
应用价值
精准营销: 根据客户细分和行为模式,制定个性化的营销方案,提高营销活动的精准性和有效性。
风险管理: 识别潜在的信用风险和欺诈行为,采取相应的风险控制措施,保障银行资产安全。
产品创新: 根据客户需求,开发新的金融产品和服务,提升客户满意度和忠诚度。
服务优化: 优化服务流程,提供更加便捷、高效的金融服务体验。
数据挖掘
4
2024-04-30
基于滑动时间衰减窗口的网络流频繁项集挖掘算法
网络流数据频繁项集挖掘是进行网络流量分析的基础。STFWFI 算法采用基于字典顺序前缀树 LOP-Tree 的方法进行频繁项集挖掘,并引入了更符合网络流特性的滑动时间衰减窗口模型,从而有效降低了时间和空间复杂度。此外,该算法还提出了一种基于统计分布的节点权值计算方法 SDNW,替代了传统的统计方法,提高了网络流节点估值的精确度。实验结果表明,STFWFI 算法在网络流频繁项集挖掘中表现出良好的性能。
数据挖掘
4
2024-05-20
基于网络数据挖掘的研究
随着技术的迅速进步,网络数据量急剧膨胀,如何高效地从海量信息中提取有价值数据成为挑战。传统搜索引擎虽提供基础检索服务,但难以满足个性化需求。因此,将数据挖掘技术引入社会网络分析是当前重要研究方向。社会网络分析通过研究个体间互动模式,已扩展到分析网络链接结构及其潜在含义。在网络数据挖掘中,应用社会网络分析能有效理解信息流动模式、识别关键网页,提升信息检索质量和效率。
数据挖掘
0
2024-09-13
基于视角的空间数据挖掘方法 (2006年)
为了满足用户在不同场景下对空间数据挖掘的个性化需求,该研究提出了空间数据挖掘视角的概念。该视角能够在明确具体数据挖掘需求的基础上,利用相应的数据挖掘算法,从海量空间数据中提取不同粒度的空间知识。研究首先深入探讨了空间数据挖掘视角的内涵和外延,进而提出了一系列相应的算法,最后将该视角应用于滑坡监测数据的实际挖掘中,取得了令人满意的效果。
数据挖掘
3
2024-05-29
基于系统云灰色预测的数据挖掘方法研究(2004年)
探讨了系统云灰色预测模型的构建原理,并详细论证了其积分生成机制。进一步深入研究了解析预测公式的应用,特别结合数据库中“贫”信息和小样本序列数据的特征。通过实例分析,比较了解析预测与离散预测的效果,凸显了其简便、详尽和直观的优势。
数据挖掘
2
2024-07-31
候选序列生成:基于关联分析的数据挖掘方法
在数据挖掘领域,关联分析是一种重要技术,而候选序列生成是关联分析中的关键步骤。
为了有效地生成候选序列,一种常见的方法是合并频繁的较短序列。具体来说,通过合并两个频繁的 (k-1)-序列,可以产生候选的 k-序列。
为了避免重复生成候选序列,可以采用类似于 Apriori 算法的策略。例如,只有当两个 (k-1)-序列的前 k-2 项相同时,才进行合并操作。
以下示例演示了如何通过合并频繁 3-序列来生成候选 4-序列:
合并 <{1 2 3}> 和 <{2 3 4}>,得到 <{1 2 3 4}>。
由于事件 3 和事件 4 属于第二个序列的不同元素,因此它们在合并后的序列中也属于不同的元素。
合并 <{1 3 4}> 和 <{3 4 4}>,得到 <{1 3 4 4}>。
由于事件 3 和事件 4 属于第二个序列的相同元素,因此将事件 4 合并到第一个序列的最后一个元素中。
算法与数据结构
3
2024-05-23
数据挖掘技术在彩信业务中的专项效益分析
随着数据挖掘技术的应用,彩信业务创造了新的亮点。丰富了彩信业务的内涵,形成了独特的文化积累,并吸引了广泛的客户群体和人气,为彩信发展奠定了良好的基础,以确保达到彩信的关键绩效指标。
数据挖掘
1
2024-07-17