EM

当前话题为您枚举了最新的 EM。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

EM算法详解
通过明确的实例展示EM算法的工作原理 深入分析EM算法的机制,揭示其运作方式
PLSA与EM算法探析
EM算法,即期望最大化算法,是一种迭代算法,用于统计学中寻找依赖于隐性变量的概率模型参数的最大似然估计。
使用Matlab实现EM算法的方法
利用Matlab编写EM算法可以用于模式识别中的参数估计。
SAS EM数据挖掘实战指南
通过实际案例,逐步讲解如何运用SAS EM进行数据挖掘,适合初学者构建完整知识体系。
SAS/EM数据变量转换工具
SAS/EM数据变量转换工具能够对数据进行多种转换操作,并将转换结果作为新变量存储在样本数据中。 数据转换的目的是提高数据与模型的拟合度,例如将非线性模型线性化、增强变量稳定性等。 该工具支持多种转换方式,包括取幂、对数、开方等,也支持用户自定义公式进行转换。
EM算法期望最大化简介
不完全数据的最优解法,EM 算法算是蛮经典的一招了。期望最大化(Expectation-Maximization)听起来挺高深,其实本质就是一套“猜一猜、算一算,再猜一猜”的循环套路,适合你遇到缺失值、不完整样本的时候用,像在聚类、隐马尔可夫模型这类场景,效果还挺不错。 1977 年,Dempster、Laird 和 Rubin 提出来之后,学术圈对它的研究热情就没断过,各种变种和改进方法一茬接一茬。用得最多的地方?机器学习、模式识别、数据挖掘这几个领域跑不了,是你搞算法方向的,这玩意迟早得用上。 算法逻辑其实也不复杂,两个主要步骤:E 步先根据当前参数估计隐藏变量;M 步再根据这些估计值去优
数据挖掘经典算法之EM详解
《数据挖掘中的十大算法》第四章深入探讨了EM算法,不同于简单的网络资料,内容详实,涵盖七个小节,共计32页。
数据挖掘中的EM算法详解
EM算法,全称期望最大化算法,是一种在统计学中广泛应用的优化算法,特别适用于处理含有隐藏变量的概率模型中的参数估计问题。在数据挖掘和机器学习领域,EM算法尤为重要,常用于数据聚类任务。其基本原理包括期望步(E-step)和最大化步(M-step),通过迭代的方式更新参数,直至收敛为止。为了更好地理解EM算法,可以从数学角度分析其期望值和最大似然估计的应用。
GMM聚类算法的贪心EM学习算法
该算法采用贪心策略结合EM算法,通过优化数据与模型的匹配度,寻找数据对GMM模型的最佳匹配,从而实现基于模型的聚类。
BKT视频评估em算法Matlab代码解析
此代码存储库包含用于进行BKT分析的Matlab代码,结合对可汗学院数据的观察,这些数据与“评估教育视频”文章中使用的数据格式相同。要运行分析,请从data_pipeline目录运行sample_pipeline.sh脚本,该脚本负责从原始日志格式解析日志并构建和训练BKT模型。要查看训练模型或结果,请在data_pipeline/analysis目录中启动Matlab并加载results.mat文件。该代码包括两个主要部分:第一个部分位于data_pipeline/scripts目录中,是用Python编写的预处理脚本,用于将原始数据转换为更易于使用的格式;第二个部分位于data_pipel