多指标预测

当前话题为您枚举了最新的 多指标预测。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

时序混合多指标决策模型
时序混合多指标决策是一种通过结合不同指标、时序数据和决策树模型来优化决策过程的技术。你可以利用这种方法一些复杂的多变量决策问题。其实,相关的资料和代码资源都挺好用的,比如有关于决策树属性选择的度量、时序数据异常检测等方面的内容。如果你对这些技术感兴趣,pyculiarity就能你时序数据异常检测,而tinyxml则是时序模式的中文指南。你可以参考这些资源来进一步深化对时序数据和多指标决策的理解。此外,还有一些实际的应用实例,比如城市轨道客流的时序数据,也可以你在实际项目中应用这些技术。如果你在时序数据或多指标决策模型时遇到困难,参考一下这些文章和代码,会给你带来一些新的思路哦。
蝴蝶指标在趋势分析与预测中的应用
蝴蝶指标作为一种技术分析工具,能够帮助交易者识别潜在的市场反转点和趋势变化。通过对指标的解读,交易者可以更好地把握市场走势,制定更有效的交易策略。 将深入探讨蝴蝶指标的计算方法、参数设置以及实战应用技巧。我们将结合具体案例,分析如何利用蝴蝶指标识别潜在的买入和卖出信号,并探讨如何将蝴蝶指标与其他技术指标结合使用,以提高交易决策的准确性。
漳村煤矿3号煤层突出预测敏感指标确定
基于数理统计和'三率'法,对煤钻屑瓦斯解吸指标Δh2、瓦斯涌出初速度q和钻屑量S进行敏感性分析,确定煤与瓦斯突出预测的敏感指标。
煤质测井响应机制及工业分析指标预测模型
河南新郑矿区赵家寨井田研究表明,煤的工业分析指标与其测井参数之间存在显著相关性。 相关性表现: 原煤水分含量与密度和视电阻率呈负相关,与自然电位和自然伽马呈正相关。 灰分与密度、自然伽马和自然电位呈正相关,与视电阻率呈负相关。 原煤挥发分与视电阻率和密度呈负相关,与自然电位和自然伽马呈正相关。 相关性成因: 煤中有机质和无机质的含量、性质、结构以及煤化作用等因素决定了煤质指标与测井参数之间的相关性。 应用: 通过多元统计模型,利用测井曲线预测原煤工业分析指标,服务于煤炭与煤层气勘探开发。
ANN采煤工作面涌水量预测与指标优化
采面涌水量预测的 ANN 模型,蛮适合做地质类数据的非线性建模,尤其是你面对变量多、分布不规律、传统方法吃力的时候。像这篇用的是三层BP 神经网络,输入层指标选得也比较靠谱,什么含水层厚度、渗透系数这些都挺关键,模型收敛也快。 用ANN这类问题最大的优势就是——你不用管公式长啥样,数据喂进去,它自己找规律。是用在涌水量预测上,还挺实用。你要是搞矿山安全、地质建模这些,可以参考下它的指标设置方式。 而且它的数据源是东欢坨矿的实际采面数据,曲线特征也得蛮细。你自己搞项目时,也可以按这个思路,先做特征提取,再喂神经网络。模型方面,三层 BP 网络够用了,别太贪心,多了容易过拟合。 要是你对 ANN
多DT_Learning使用新目标学习指标的DT Matlab代码
Matlab代码DT_learning.m、gradient_m.m和gradient_w.m用于基于新目标对MNIST数据集进行分类的多DT学习。Tree_Growing.m是一个递归函数,使用提议的目标应用ID3算法进行树的生长。
富含小构造煤层突出预测敏感指标及临界值研究
煤层突出预测这块,刘庄煤矿的这篇研究还挺有料的。地质区分得比较细,把正常地质区和构造异常区单独建模,预测更贴地气。用了“三率法”,还把S 值和Δh2的临界点算得明明白白——前者是 6 kg/m 和 4.8 kg/m,后者是 160 Pa 和 128 Pa。 嗯,最大的亮点其实是:预测准确率直接干到了100%,危险点一个没漏。对搞煤矿安全的朋友来说,减少排放工程量,省钱又稳,是真香系列。如果你对敏感指标的选择比较纠结,可以拿这篇当个参考模板,照着建模也不难。 顺带一提,其他几篇也挺值得一看:安顺煤矿的预测临界值研究那篇,做法也蛮类似的;还有漳村煤矿的 3 号煤层,数据挺扎实。你要是想拓展思路,也
安顺煤矿煤与瓦斯突出预测指标及临界值研究
为提升生产安全和突出预测准确性,对安顺煤矿的煤与瓦斯突出预测指标进行现场跟踪和统计分析。确定了突出敏感指标及其临界值的选定标准和测试方案。研究表明,钻孔瓦斯涌出初速度q是该矿突出预测的关键指标,其临界值定为q=5 L/min。这些理论数据和参数为实际突出预测提供了重要支持,并已初步验证。
煤与瓦斯突出预测敏感指标的新方法探索及应用
煤与瓦斯突出预测敏感指标的确定对安全开采至关重要。分析了传统确定方法的局限性,并提出了基于统计分析的新方法,以确定不同地质条件下的预测指标适用性。在开滦矿区的实际应用中发现,钻孔瓦斯涌出初速度指标适用于典型突出煤层,瓦斯解吸指标适用于主要瓦斯型突出煤层,钻屑量指标适用于主要应力型突出煤层。研究表明,高应力是开滦矿区控制突出的主要因素,其次是高压瓦斯,关键预测指标为钻屑量和瓦斯解吸指标。
基于GMDH的卷烟工艺参数与质量指标关系模型构建及预测
为探究烟草加工过程中工艺参数对产品质量指标的影响,采用自组织数据挖掘方法——群方法处理数据(GMDH)建立工艺参数与质量指标的关系模型。通过该模型预测质量指标,并与多元线性回归模型预测结果进行对比,验证了GMDH方法在卷烟质量预测中的有效性。