频繁项集
当前话题为您枚举了最新的频繁项集。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
基于有向项集图的最大频繁项集挖掘算法
本算法基于有向项集图存储事务数据库中频繁项集信息,采用三叉链表结构组织有向项集图,并在此基础上提出最大频繁项集挖掘算法。该算法一次扫描事务数据库,有效减少I/O开销,适用于稀疏和稠密数据库的最大频繁项集挖掘。
数据挖掘
2
2024-05-31
最大频繁项集快速更新算法FUMFS
FUMFS算法优化了最大频繁项集的维护,利用已有BitMatrix和最大频繁项集,有效地更新挖掘结果。
数据挖掘
4
2024-05-12
垂直数据格式挖掘频繁项集
垂直数据格式挖掘频繁项集可避免生成候选频繁项集,进而节省CPU开销。
数据挖掘
4
2024-05-25
频繁项集连接步骤的约束条件
假设 l1 和 l2 是频繁 (k-1)-项集集合 Lk-1 中的两个项集,li[j] 表示项集 li 的第 j 个项。为简化讨论,假设事务或项集中的项按字典序排序。在执行 Lk-1 和 Lk-1 的连接操作 (Lk-1 ∞ Lk-1) 时,只有当 Lk-1 中的两个元素满足前 (k-2) 个项相同的前提条件时,才能进行连接。
数据挖掘
2
2024-05-27
并行频繁项集挖掘算法的优化研究
传统的挖掘频繁项集的并行算法存在节点间负载不均衡、同步开销过大、通信量大等问题。针对这些挑战,提出了一种名为多次传送重新分配数据的并行算法(MRPD)。在MRPD算法中,第l步将数据库重新划分成多个组,并根据各节点的需求多次传送这些组。各节点在异步地计算完整组后,可以得到所有频繁项集。理论分析和实验结果均表明,MRPD算法在优化并行频繁项集挖掘中具有显著效果。
数据挖掘
2
2024-07-16
Apriori算法:频繁项集挖掘与关联规则学习
Apriori算法是一种用于数据挖掘的经典算法,其核心目标是发现数据集中频繁出现的项集以及学习部分关联规则。
算法特点:
迭代式方法: Apriori算法采用逐层迭代的方式,从单个频繁项开始,逐步生成更大的频繁项集。
支持度阈值: 通过设定最小支持度阈值,筛选出满足条件的频繁项集,有效控制结果数量。
关联规则生成: 基于频繁项集,Apriori算法可以推导出“一对多”或“多对一”形式的部分关联规则。
局限性:
无法处理多对多关联规则: Apriori算法目前版本仅支持生成一对多或多对一形式的关联规则,对于更复杂的多对多关联规则尚待改进。
数据挖掘
1
2024-05-24
基于有序FP-tree的最大频繁项集挖掘
基于有序FP-tree的最大频繁项集挖掘
概念提出: 完全前缀路径、有序FP-tree
有序FP-tree构建: 根据数据项所在层级建立
数据表示: 利用有序FP-tree表示数据
算法提出: MFIM算法,利用有序FP-tree中的完全前缀路径进行最大频繁项集挖掘
算法优化: 利用完全前缀路径对挖掘算法进行优化
实验结果: 对于浓密数据集中的长模式挖掘具有良好性能
数据挖掘
2
2024-05-25
MFWSR数据流上的频繁闭项集挖掘算法
MFWSR:数据流上的频繁闭项集挖掘算法,陶克,王意洁,数据流上频繁项集挖掘是数据挖掘有效手段之一,是相联规则挖掘的重要基础。频繁闭项集挖掘的结果更简洁而又能保留所有频繁项集的结果。
数据挖掘
0
2024-08-08
频繁项集合并操作
实现频繁项集合并的最小距离目标,并能灵活设定目标集合大小。
算法与数据结构
3
2024-04-30
基于模糊等价类的频繁项集精简表示方法研究
频繁项集挖掘是数据挖掘的重要应用,但庞大的频繁项集数量限制了其实际应用。为减少频繁项集数量,使其更易于应用,提出一种基于格结构的频繁项集精简模型,并证明该方法产生的支持度误差范围。在此基础上,提出模糊等价类精简表示算法FEC。实验结果表明,该方法在显著减少频繁项集数量的同时,能有效控制支持度误差,与Index-Meta算法相比,产生的支持度误差更小。因此,基于模糊等价类的频繁项集精简表示模型及FEC算法具有较高应用价值。
数据挖掘
7
2024-05-12