递推滤波
当前话题为您枚举了最新的 递推滤波。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
递推滤波的时间间隔与卡尔曼滤波在天气预报中的应用
3、递推滤波的时间间隔不宜长,一般在短时或短期预报中应用卡尔曼滤波方法优于中期预报。4、预报精度选择好的预报因子是至关重要的。
Matlab
0
2024-11-06
数值分析递推公式程序
由老师编写的数值分析递推公式 MATLAB 程序,已调试无误。
Matlab
5
2024-05-28
INS/GPS 组合定位 EKF 递推
此文档详细介绍 INS/GPS 组合定位中扩展卡尔曼滤波 (EKF) 的递推过程,包括状态方程、观测方差及其线性化。
算法与数据结构
3
2024-05-15
递推最小二乘算法的应用
在Matlab中,递推最小二乘算法被广泛应用于参数估计、系统辨识和自适应控制领域。
Matlab
0
2024-08-23
MATLAB递推关系式作图程序源码下载
MATLAB递推关系式作图程序源码下载链接。
Matlab
0
2024-08-28
无需遍历数据,动态计算方差的递推公式
在处理大数据或流式数据时,传统的方差计算方法需要遍历所有数据,效率低下且占用大量存储空间。方差递推公式可以解决这个问题,它允许我们根据之前状态的均值、方差、数据量以及当前数据项,动态计算当前状态的方差,而无需存储所有历史数据。
方差递推公式推导过程:
假设我们已经计算出了前 n 个数据的均值为 (bar{x}n) ,方差为 (s_n^2) ,现在新增一个数据 (x{n+1}) ,我们需要计算前 n+1 个数据的方差 (s_{n+1}^2) 。
首先,我们可以根据均值的定义,得到前 n+1 个数据的均值 (bar{x}_{n+1}) :
(bar{x}{n+1} = frac{nbar{x}_n + x{n+1}}{n+1})
然后,我们可以将方差的定义式展开:
(s_{n+1}^2 = frac{1}{n+1}sum_{i=1}^{n+1}(x_i - bar{x}_{n+1})^2)
将 (bar{x}_{n+1}) 代入上式,经过一系列的化简,我们可以得到:
(s_{n+1}^2 = frac{n}{n+1}s_n^2 + frac{n}{(n+1)^2}(x_{n+1}-bar{x}_n)^2)
这个公式就是方差递推公式,它让我们可以在已知前 n 个数据的均值、方差、数据量的情况下,通过简单的计算得到前 n+1 个数据的方差,而无需存储所有历史数据,极大地提高了计算效率。
算法与数据结构
5
2024-05-23
Gabor滤波
输入图片路径,生成40次卷积结果,每个结果转换为一维向量,并串联所有结果。
Matlab
2
2024-05-20
事件概率计算:卡尔曼滤波、H∞滤波及非线性滤波应用
探讨在 X 和 Y 中至少有一个小于 0.5 的概率,以及从 (0,1) 中随机选取两个数,其积不小于 3/16 且其和不大于 1 的概率的计算方法。
问题一:假设 X 和 Y 是随机变量,求 X 和 Y 中至少有一个小于 0.5 的概率。
问题二:假设 X 和 Y 分别表示从 (0,1) 中随机选取的两个数,求其积不小于 3/16 且其和不大于 1 的概率。
这两个问题涉及概率计算,可以使用卡尔曼滤波、H∞滤波和非线性滤波等方法来解决。这些方法可以用于估计系统的状态,并基于这些估计来计算事件的概率。
算法与数据结构
3
2024-05-20
MATLAB代码均值滤波与中值滤波对比
这段MATLAB代码可以用于比较图像处理中的均值滤波和中值滤波效果。
Matlab
0
2024-09-29
深入解析:卡尔曼滤波、H∞滤波与非线性滤波的优越性
滤波技术对比分析
卡尔曼滤波、H∞ 滤波和非线性滤波,各自在状态估计领域中扮演着重要的角色,它们针对不同的应用场景和噪声特性,提供了独特的优势:
卡尔曼滤波: 在处理高斯白噪声线性系统时,卡尔曼滤波能够提供最优的估计结果。它基于系统的状态空间模型,通过预测和更新步骤,不断修正对系统状态的估计,从而实现对系统状态的实时跟踪。
H∞ 滤波: 当系统受到未知的噪声或干扰时,H∞ 滤波能够有效地抑制噪声的影响,保证估计误差在一定范围内。它通过最小化估计误差的 H∞ 范数,实现对系统状态的鲁棒估计。
非线性滤波: 针对非线性系统,非线性滤波提供了多种方法来应对状态估计的挑战,例如扩展卡尔曼滤波 (EKF)、无迹卡尔曼滤波 (UKF) 和粒子滤波 (PF) 等。这些方法通过不同的线性化或采样技术,近似非线性系统的状态估计问题,并提供相应的解决方案。
总而言之,选择合适的滤波方法取决于具体的应用场景和噪声特性。卡尔曼滤波适用于线性系统和高斯白噪声,H∞ 滤波适用于存在未知噪声或干扰的情况,而非线性滤波则适用于非线性系统的状态估计。
算法与数据结构
7
2024-04-30