时间序列
当前话题为您枚举了最新的 时间序列。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
R语言时间序列分析
利用全国卷烟销量数据,采用R语言进行时间序列分析。分别构建ARIMA季节时间序列模型、Holtwinters指数平滑模型,并评估模型准确性。提供完整R代码和数据集。
算法与数据结构
4
2024-05-13
resampleX - 重采样时间序列
resampleX 可重采样时间序列数据,以更改其采样率。它通过使用指定的重采样间隔 alpha 来执行此操作。例如,要将每秒采样 1000 次的数据转换为每秒 1100 次,请使用 alpha = 1000/1100。resampleX 与 MATLAB 的“resample”函数类似,但速度通常更快。
Matlab
2
2024-05-20
时间序列分析预测法
时间序列分析预测法分为三类:
平滑预测法:采用移动平均和指数平滑方法,平滑原始数据趋势线。
趋势外推预测法:利用历史数据拟合趋势函数,预测未来趋势。
平稳时间序列预测法:估计模型参数,根据历史数据预测未来值。
算法与数据结构
4
2024-05-24
Matlab时间序列分析代码
时间序列数据分析的Matlab实现代码。
Matlab
1
2024-07-27
时间序列分析资源包
本资源包包含教学PPT和MATLAB实现代码,详细介绍了时间序列的基本理论。时间序列是按时间顺序排列的统计指标数列,主要用于基于历史数据预测未来走势。经济数据通常以时间序列形式呈现,时间单位可以是年、季度、月等。
Matlab
0
2024-09-28
时间序列表示方法比较
李俊奎和王元珍总结了各种典型的时间序列表示方法,从多个角度分析其特点。该研究有助于理解时间序列表示的进展和应用。
数据挖掘
2
2024-05-20
MATLAB时间序列预测方法概述
MATLAB中的经典时间序列预测方法包括自回归(AR)、移动平均线(MA)、自回归移动平均线(ARIMA)等多种技术。这些方法已经在各行业展示出色的分类和预测能力。在探索更高级的机器学习方法之前,建议首先熟悉这些经典技术,确保数据准备充分且方法正确。详细介绍了每种方法的实现步骤和使用提示,是入门时间序列预测的理想起点。
Matlab
0
2024-08-23
在线时间序列数据挖掘优化
时间序列数据挖掘是数据分析中重要的分支之一,专注于从序列数据中提取信息和模式。在这个过程中,相似性度量是核心任务之一。欧几里得距离作为基本的相似性度量方法之一,具有线性时间复杂度,但对异常点敏感,且要求比较的序列长度相等。动态时间规整(DTW)作为另一种有效方法,能够测量不同长度时间序列之间的相似性,通过弯曲操作处理等长时间序列,使其匹配到相似趋势上。文章《在线和动态时间规整,用于时间序列数据挖掘》提出了一种加速DTW计算的方法,通过滑动窗口将长序列分割为短子序列,并提出了有效的DTW算法来测量子序列间的相似性。数值实验表明,该方法比传统DTW方法更快、更有效。文章还结合在线学习,将DTW应用于实时数据流中,显著提高了算法在时间序列数据挖掘中的性能。
数据挖掘
0
2024-08-31
时间序列建模(ARIMA):概念与案例
时间序列是一种按固定时间间隔排列的数据集,通过分析其变化规律,可用于预测未来趋势。ARIMA(自回归移动平均差分模型)是一种常用的时间序列模型,用于预测基于历史数据的数据序列。它包含三个分量:自回归(AR)、差分(I)、移动平均(MA)。在使用 ARIMA 模型时,需要确保数据序列平稳(均值和方差随时间保持恒定),并通过对数转换或差分使其平稳。模型的步骤包括:确定自回归阶数、差分阶数和移动平均阶数,然后建立模型并进行预测。
统计分析
5
2024-04-30
Pandas时间序列数据: 转换与处理
Pandas时间序列数据: 转换与处理
本篇主要讲解如何使用Pandas转换与处理时间序列数据, 涉及以下几个核心概念:
时间相关的类: Timestamp, Period, Timedelta
Timestamp: 属性与使用方法
Period: 属性与使用方法
DatetimeIndex: 创建与使用, 函数参数详解
PeriodIndex: 创建与使用, 函数参数详解
课堂案例: 通过实际案例, 深入理解Pandas时间序列数据处理技巧
统计分析
5
2024-05-12