负相依

当前话题为您枚举了最新的负相依。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

加权负关联规则挖掘
针对传统关联规则挖掘算法不能有效挖掘负关联规则的问题,该研究引入了负关联的理论,并提出了新的算法。
非负矩阵分解算法价值探讨
非负矩阵分解方向的文章具有一定参考价值,推荐有兴趣的读者阅读学习。
Matlab非负矩阵分解NMF-NMF演示文稿
Matlab非负矩阵分解NMF-NMF演示文稿包括非负矩阵分解的讲义和相关程序截图。
高光谱解混的非负矩阵分解Matlab程序
该Matlab程序利用非负矩阵分解技术,对高光谱数据进行解混操作,适用于图形图像处理领域。
基于非负最小二乘法求解线性方程
非负最小二乘法 (NNLS) 是一种用于求解线性方程组的数值方法,尤其适用于解向量需满足非负约束的情况。 给定线性方程组 A * x = b,NNLS 寻找向量 x,在满足 x 的所有元素非负 (x >= 0) 的前提下,最小化残差平方和 ||A * x - b||^2。 相比于传统的最小二乘法,NNLS 引入非负约束,能够在信号处理、图像分析等领域提供更具物理意义和可解释性的解。
Matlab代码示例共生矩阵的非负张量因式分解
这是一个用Matlab实现的代码示例,用于通过非负张量因式分解区分表型和独特表型。该代码需要使用Tensor工具箱2.6版,并处理count.csv和label.csv数据格式,其中包括每个受试者的诊断和处方并发计数,以及临床结局的受试者ID。此外,还涉及诊断和处方的成对相似性矩阵similarities.csv。
matlab开发支持HDL的14位负偏差检测器
matlab开发了一款支持HDL的14位负偏差检测器。由于默认的1d Simulink边缘检测器与HDL编码器不兼容,因此提供了这个替代方案。
Matlab中基于条形码识别的负条形码处理
描述了一种用于识别条形码的Matlab代码,该代码能够处理负条形码。已对该代码进行了测试,证明其简单实用,可用于课程设计等场景。
非负张量分解保持多维数据结构的先进方法
在现实生活中,存在大量多维数据,如视频流数据、文本数据和RGB图像等。传统方法通常将多维数据重构为矩阵,利用PCA、SVD、NMF等矩阵分析方法进行特征提取、聚类和分类,然而,这样的重构会破坏数据的空间结构,降低分析结果的准确性。张量作为多维数组,是向量和矩阵在高维上的推广,能够在分析中保持数据的原始结构,因而备受学者关注,被广泛应用于计算机视觉、数据挖掘、信号处理等领域。重点研究三阶非负张量分解问题,回顾了三阶张量非负分解模型(NTVl)的思想及实现过程,并提出了基于张量投影的非负分解模型(NTPM),提供了相应的算法公式。在收敛性分析中,给出并证明了KKT条件的等价形式和算法收敛性定理。实验结果显示,NTPM模型在运行时间和逼近误差方面优于传统的非负分解模型。最后,讨论了NTPM模型的未来研究方向。
计算带负参数的Mathieu函数的Matlab工具V1.0
这些例程是使用Matlab语言编程的,基于Mathieu函数的正负参数转换关系。一些函数引用自Ben Barrowes的直接翻译,使用f2matlab执行,原始FORTRAN-77实现“计算特殊功能”。该包包括以下子程序: dbesseli:计算第一类修正贝塞尔函数的导数; dbesselk:计算第二类修正贝塞尔函数的导数; mathieuq:计算Mathieu函数cem(x,q)和sem(x,q),(q>0); dmathieuq:计算Mathieu函数cem'(x,q)和sem'(x,q),(q>0); Mathieu_Q:计算Mathieu函数cem(x,Q)和sem(x,Q),(Q Dmathieu_Q:计算Mathieu函数cem'(x,Q)和sem'(x,Q)。